Page 221 - Fundamentals of Communications Systems
P. 221

Amplitude Modulation  6.43

                            The frequencies contained in the bandpass signal are f = 194, 198, 202,
                          206 so the bandpass signal will be periodic with period T = 1/2. Since

                                                       ∞

                                               x c (t) =   x k exp[ j 2π2kt]             (6.52)
                                                      k=−∞
                          the Fourier series coefficients are

                              8A c             8A c            8A c            8A c
                       x 97 =   √      x −97 =   √      x 99 =  √      x −99 =  √        (6.53)
                             9π 2  2          9π 2  2         π 2  2          π 2  2
                              8A c            8A c             8A c             8A c
                      x 101 =  √      x −101 =  √      x 103 =  √       x −103 =  √      (6.54)
                             π 2  2           π 2  2         9π 2  2           9π 2  2
                                                                 2
                                                         2
                                                     = A P m = A 0.3325. If a transmitted power
                                                         c       c
                       (c) The power of DSB-AM is P x z
                                                       2
                          of 50 W is to be achieved then A = 50/.3325 or A c = 12.26.
                                                       c
                      (d) See Figure 6.6.
                      Problem 6.23. For SSB-AM we have
                                    x z (t) = x I (t) + jx Q (t) = A c [m(t) + jh Q (t) ∗ m(t)]  (6.55)
                      where h Q (t) is the Hilbert transformer where H Q (f ) =− j sgn(f ).
                      (a) Since
                                                 8               8
                                         m(t) =    cos(2π(2)t) +    cos(2π(6)t)          (6.56)
                                                π 2             9π 2
                          we have
                                                  8                8

                                       x I (t) = A c  2  cos(2π(2)t) +  2  cos(2π(6)t)   (6.57)
                                                  π              9π
                          The complex envelope of the transmitted bandpass signal is given as

                               x z (t) = x I (t) + jx Q (t)
                                           8               8               j 8

                                    = A c   2  cos(2π(2)t) +  2  cos(2π(6)t) +  2  sin(2π(2)t)
                                          π               9π               π
                                         j 8
                                      +     sin(2π(6)t)
                                        9π 2
                                           8                 8

                                    = A c   2  exp( j 2π(2)t) +  2  exp( j 2π(6)t)       (6.58)
                                          π                 9π
                          The frequency domain representation of the complex envelope is
                                                   A c 8         A c 8
                                           X z (f ) =  2  δ( f − 2) +  2  δ( f − 6)      (6.59)
                                                    π            9π
                          The complex envelope is periodic with period T = 1/2.
   216   217   218   219   220   221   222   223   224   225   226