Page 118 - Fundamentals of Computational Geoscience Numerical Methods and Algorithms
P. 118

106   5  Simulating Chemical Dissolution Front Instabilities in Fluid-Saturated Porous Rocks

              It is noted that the total solutions expressed in Eqs. (5.53) and (5.54) must satisfy
            the governing equations that are expressed in Eqs. (5.45) and (5.46). With consid-
            eration of Eq. (5.58), the first-order perturbation equations of this system can be
            expressed as

                         2
                        ∂ ˆ p  2
              ˆ
                                      2
              C = 0,        − m ˆ p + m p 0x  = 0  (in the downstream region),  (5.59)
                        ∂ξ  2
                  2 ˆ
                           ˆ
                 ∂ C      ∂C    2 ˆ                               ∂ ˆ p


                                       2

                     + p   fx  − m C − m p exp(−p ξ) − p exp(−p ξ)   = 0,
                                                               fx
                                         fx
                                                 fx
                                                       fx
                 ∂ξ 2     ∂ξ                                      ∂ξ
                        2
                       ∂ ˆ p  2
                                    2
                           − m ˆ p + m p = 0   (in the upstream region).  (5.60)
                                       fx
                       ∂ξ 2
              The corresponding boundary conditions of the first-order perturbation problem
            are:
                                     ∂ ˆ p
                       ˆ
                       C = 0,    lim    = 0    (downstream boundary),    (5.61)
                                 x→∞ ∂ξ
                                       ∂ ˆ p
                        ˆ
                    lim C = 0,     lim    = 0     (upstream boundary).   (5.62)
                   x→−∞           x→−∞ ∂ξ
              Similarly, the interface conditions for this first-order perturbation problem can be
            expressed as follows:
                                 ˆ
                                C = 0,     lim ˆ p = lim ˆ p,            (5.63)
                                           S→0 −   S→0 +
                         ˆ
                       ∂C                       ∂ ˆ p  ψ(φ 0 )  ∂ ˆ p
                    lim    = ω(φ f − φ 0 ),  lim   =       lim    .      (5.64)
                   S→0 ∂n                  S→0 ∂n    ψ(φ f ) S→0 ∂n
                                              −
                                                              +
                      −
              Solving Eqs. (5.59) and (5.60) with the boundary and interface conditions (i.e.
            Eqs. (5.61) and (5.62)) yields the following analytical results:
                                     1 − β
             ˆ
            C = 0,     ˆ p(ξ) = p    0x  1 −  exp(− |m| ξ)  (in the downstream region),
                                     1 + β
                                                                         (5.65)
                                         2            1 − β

               ˆ


               C(ξ) =−p    exp(−p ξ) −      exp(σξ) +      exp[(|m| − p )ξ] ,
                        fx       fx                                  fx
                                       1 + β          1 + β

                                1 − β
                   ˆ p(ξ) = p     1 +  exp(|m| ξ)      (in the upstream region),
                          fx
                                1 + β
                                                                         (5.66)
   113   114   115   116   117   118   119   120   121   122   123