Page 128 - Fundamentals of Probability and Statistics for Engineers
P. 128

Expectations and Moments                                        111

           Hence, as n !1,
                                                    2
                                               2
                                     XY …t; s† e  …t ‡ts‡s † :         …4:94†
           Now, substituting Equation (4.94) into Equation (4.87) gives

                                   1  Z  1  Z  1   j…tx‡sy†  …t ‡ts‡s †
                                                       2
                                                           2
                       f  XY …x; y†ˆ         e      e        dtds;       …4:95†
                                  4  2   1   1
           which can be evaluated following a change of variables defined by

                                      0
                                                 0
                                     t ‡ s 0     t   s 0
                                  t ˆ p  ;  s ˆ p  :               …4:96†
                                        2          2
           The result is

                                                  2        2
                                        1        x   xy ‡ y
                           f  XY …x; y†ˆ  p  exp         :            …4:97†
                                      2  3            3
           The above is an  example of a  bivariate normal distribution, to  be discussed  in
           Section 7.2.3.
             Incidentally, the joint moments of X  and Y  can be readily found by means of
           Equation (4.88). For large n, the means of X  and Y ,   10 and   01 ,are


                           q  XY …t; s†                2    2
                     10 ˆ j             ˆ j… 2t   s†e   …t ‡ts‡s †    ˆ 0;
                              qt
                                    t;sˆ0                     t;sˆ0

                     01 ˆ j  q  XY …t; s†      ˆ 0:
                              qs
                                    t;sˆ0
           Similarly, the second moments are

                                             2
                                      2
                              20 ˆ EfX gˆ    q   XY …t; s†      ˆ 2;
                                               qt 2
                                                      t;sˆ0
                                             2
                                      2
                              02 ˆ EfY gˆ    q   XY …t; s†      ˆ 2;
                                               qs 2
                                                      t;sˆ0
                                             2
                              11 ˆ EfXYgˆ   q   XY …t; s†      ˆ 1:
                                              qt@s
                                                     t;sˆ0







                                                                            TLFeBOOK
   123   124   125   126   127   128   129   130   131   132   133