Page 319 - Geochemical Anomaly and Mineral Prospectivity Mapping in GIS
P. 319

322                                                            References

                Geological Association of Canada Special Publication 44, Geological Association of Canada,
                St. John’s, pp. 1-21.
             Harris, J.R., Sanborn-Barrie,  M., Panagapko, D.A., Skulski, T., Parker, J.R., 2006. Gold
                prospectivity maps of the Red Lake greenstone belt: application of GIS technology. Canadian
                Journal of Earth Sciences 43(7): 865-893.
             Harris, J.R., Wilkinson, L., Bernier, M., 2001a. Analysis of geochemical data for mineral
                exploration using a GIS – a case study from the Swayze greenstone belt, northern Ontario,
                Canada. In: McClenaghan, M.B., Borrowsky, P.T., Hall, G.E.M., Cook, S.J. (Eds.), Drift
                Exploration in Glaciated Terrain, Geological Society, London, Special Publications 2001, 185:
                165-200.
             Harris, J.R., Wilkinson, L., Grunsky, E., Heather, K., Ayer, J., 1999. Techniques for analysis and
                visualization of lithogeochemical  data with applications to the Swayze greenstone belt,
                Ontario. Journal of Geochemical Exploration 67(1-3): 301-334.
             Harris, J.R., Wilkinson, L., Heather, K., Fumerton, S., Bernier, M.A., Ayer, J., Dahn, R., 2001b.
                Application of GIS processing techniques for producing mineral prospectivity maps – a case
                study: mesothermal Au in the Swayze Greenstone Belt, Ontario, Canada. Natural Resources
                Research 10(2): 91-124.
             Haslett, J., Bradley, R., Craig, P., Unwin, A., Wills, G., 1991. Dynamic graphics for exploration
                spatial data with application to locating global and local anomalies. The American Statistician
                45(3): 234-242.
             Hawkes, H.E., 1976. The downstream dilution of stream  sediment anomalies. Journal of
                Geochemical Exploration 6(1-2): 345-358.
             Hedenquist, J.W., 1986. Geothermal systems in the Taupo Volcanic Zone: their characteristics and
                relation to volcanism and mineralization. In: I.E.M. Smith (Ed.), Late Cenozoic Volcanism in
                New Zealand, Royal Society of New Zealand Bulletin 23, pp. 134-168
             Hedenquist, J.W., Arribas, A., Reynolds, T.J., 1998. Evolution of intrusion-centered hydrothermal
                system: Far Southeastern – Lepanto porphyry  and epithermal  Cu-Au deposits, Philippines.
                Economic Geology 93(4): 373-404.
             Hedenquist, J.W., Henley, R.W., 1985. The importance of CO 2  on freezing point measurements of
                fluid inclusions; evidence from active geothermal systems and implications for epithermal ore
                deposition. Economic Geology 80(5): 1379-1406.
             Hellendoorn, H., Thomas, C., 1993.  Defuzzification in fuzzy controllers. Journal of Intelligent
                Fuzzy Systems 1(2): 109-123.
             Hengl, T., 2006. Finding the right pixel size. Computers & Geosciences 32(9): 1283-1298.
             Henley, R.W., 1990. Epithermal gold deposits in volcanic terranes. In: R.P. Foster (Ed.), Gold
                Metallogeny and Exploration, Blackie, Glasgow, pp. 133-164.
             Henley, R.W., Adams, D.P.M., 1992. Strike-slip fault reactivation as a control on epithermal vein-
                style gold mineralization. Geology 20(5): 443-446.
             Hill, D.P., 1977. A model for earthquake swarms. Journal of Geophysical Research 82(B8): 347-
                352.
             Hirano, A., Welch, R., Lang, H., 2003. Mapping from ASTER stereo image data: DEM validation
                and accuracy assessment. ISPRS Journal of Photogrammetry & Remote Sensing 57(5-6): 356-
                370.
   314   315   316   317   318   319   320   321   322   323   324