Page 233 - Handbook Of Integral Equations
P. 233

a

                              λt
               10.        x – ke  – k y(t) dt = f(x).

                      0
                     This is a special case of equation 3.8.6 with g(t)= ke λt  – k.
                       b

                               2
               11.        exp(λx ) – exp(λt ) y(t) dt = f(x),  λ >0.
                                        2
                      a
                                                                   2
                     This is a special case of equation 3.8.3 with g(x) = exp(λx ).
                        Solution:

                                                  1 d   1
                                                                2

                                           y(x)=          exp(–λx )f (x) .
                                                                   x
                                                 4λ dx x
                        The right-hand side f(x) of the integral equation must satisfy certain relations (see item 2 ◦
                     of equation 3.8.3).
                       1      ∞      t 2
               12.   √        exp –     y(t) dt = f(x).
                       πx  0        4x
                     Applying the Laplace transformation to the equation, we obtain
                                          √
                                        ˜ y( p )                ∞  –pt
                                                 ˜
                                                         ˜
                                         √    = f(p),   f(p)=     e  f(t) dt.
                                           p
                                                               0
                                                                                ˜
                                    2
                                                                                  2
                     Substituting p by p and solving for the transform ˜y,we find that ˜y(p)= pf(p ). The inverse
                     Laplace transform provides the solution of the original integral equation:
                                                       –1
                                                                           pt
                                              2
                                            ˜
                                        –1
                                 y(t)= L {pf(p )},   L {g(p)}≡   1     c+i∞  e g(p) dp.
                                                                2πi
                                                                     c–i∞
                       ∞

                                  2
               13.       exp[–g(x)t ]y(t) dt = f(x).
                      0
                     Assume that g(0) = ∞, g(∞) = 0, and g <0.

                                                    x
                                           1
                        The substitution z =  leads to equation 3.2.12:
                                         4g(x)
                                            1     ∞      t 2
                                           √       exp –     y(t) dt = F(z),
                                            πz  0        4z
                                                                      2                    1
                     where the function F(z) is determined by the relations F = √ f(x)  g(x) and z =
                                                                       π                 4g(x)
                     by means of eliminating x.
               3.3. Equations Whose Kernels Contain Hyperbolic
                      Functions
                 3.3-1. Kernels Containing Hyperbolic Cosine
                         b

               1.         cosh(λx) – cosh(λt) y(t) dt = f(x).

                      a
                     This is a special case of equation 3.8.3 with g(x) = cosh(λx).
                        Solution:

                                                     1 d     f (x)

                                                              x
                                               y(x)=                .
                                                     2λ dx sinh(λx)
                        The right-hand side f(x) of the integral equation must satisfy certain relations (see item 2 ◦
                     of equation 3.8.3).
                 © 1998 by CRC Press LLC





               © 1998 by CRC Press LLC
                                                                                                             Page 212
   228   229   230   231   232   233   234   235   236   237   238