Page 553 - Handbook Of Integral Equations
P. 553

11.4. Method of Fredholm Determinants

                 11.4-1. A Formula for the Resolvent
               A solution of the Fredholm equation of the second kind

                                             b
                                   y(x) – λ  K(x, t)y(t) dt = f(x),  a ≤ x ≤ b,             (1)
                                           a
               is given by the formula
                                                 b

                                  y(x)= f(x)+ λ   R(x, t; λ)f(t) dt,  a ≤ x ≤ b,            (2)
                                                a
               where the resolvent R(x, t; λ)isdefined by the relation

                                                  D(x, t; λ)
                                       R(x, t; λ)=        ,   D(λ) ≠ 0.                     (3)
                                                   D(λ)
               Here D(x, t; λ) and D(λ) are power series in λ,

                                       ∞      n                     ∞     n
                                          (–1)         n               (–1)    n
                             D(x, t; λ)=       A n (x, t)λ ,  D(λ)=         B n λ ,         (4)
                                            n!                          n!
                                       n=0                         n=0
               with coefficients defined by the formulas
                                                       K(x, t)  K(x, t 1 )  ···

                                               b     b     K(t 1 , t)  K(t 1 , t 1 )  ···  K(x, t n)
                  A 0 (x, t)= K(x, t),  A n (x, t)=  ···     .  .    .  K(t 1 , t n)     dt 1 ...dt n ,  (5)
                                                                           .
                                                        .      .     .     .
                                             a     a     .     .      .    .
                                                     K(t n, t)  K(t n, t 1 )  ···  K(t n, t n)

                                                n
                                          K(t 1 , t 1 )  K(t 1 , t 2 )  ···  K(t 1 , t n)

                                 b     b     K(t 2 , t 1 )  K(t 2 , t 2 )  ···

                  B 0 =1,  B n =  ···       .      .    .   K(t 2 , t n)      dt 1 ...dt n ;  n = 0,1,2, ... (6)
                                                               .
                                            .      .     .     .
                                a     a     .      .      .    .
                               	  
        K(t n, t 1 )  K(t n, t 2 )  ···  K(t n, t n)
                                   n
                   The function D(x, t; λ) is called the Fredholm minor and D(λ) the Fredholm determinant. The
               series (4) converge for all values of λ and hence define entire analytic functions of λ. The resolvent
               R(x, t; λ) is an analytic function of λ everywhere except for the values of λ that are roots of D(λ).
               These roots coincide with the characteristic values of the equation and are poles of the resolvent
               R(x, t; λ).
                   Example 1. Consider the integral equation
                                             1

                                                t
                                     y(x) – λ  xe y(t) dt = f(x),  0 ≤ x ≤ 1,  λ ≠ 1.
                                            0
                   We have
                                                                          t   t    t
                                                                         xe
                                                                            xe 1
                                       1   xe  xe 1                   1
                                          t    t                    1            xe 2
                                                                              t
                                                                                   t
                         t
                A 0 (x, t)= xe ,  A 1 (x, t)=       dt 1 =0,  A 2 (x, t)=    t 1 e t  t 1 e 1  t 1 e 2   dt 1 dt 2 =0,
                                          t 1 e t  t
                                      0      t 1 e 1              0  0    t   t    t
                                                                        t 2 e  t 2 e 1  t 2 e 2
               since the determinants in the integrand are zero. It is clear that the relation A n(x, t) = 0 holds for the subsequent coefficients.
               Let us find the coefficients B n:
                                                                     t
                               1            1                  1  1   t 1 e 1  t

                                                                        t 1 e 2
                                               t 1
                         B 1 =  K(t 1 , t 1 ) dt 1 =  t 1 e dt 1 =1,  B 2 =       dt 1 dt 2 =0.
                                                                     t
                                                                    t 2 e 1  t
                              0            0                  0  0      t 2 e 2
                 © 1998 by CRC Press LLC
               © 1998 by CRC Press LLC
                                                                                                             Page 536
   548   549   550   551   552   553   554   555   556   557   558