Page 639 - Handbook Of Integral Equations
P. 639

Hence,
                                           m


                                   arg D(t)  (t – z k ) ν k  =0,  j =1, ... , m.
                                           k=1         L j
                   Let us calculate the increment of the argument of the function D(t)  m   (t – z k ) ν k  with respect to
                                                                        k=1
               the contour L 0 :
                            m                                  m                      m


                 1                           1              1
                    arg D(t)  (t – z k ) ν k  =  arg D(t)  +     [ν k arg(t – z k )] L 0  = ν 0 +  ν k = ν.
                2π                           2π        L 0  2π
                            k=1         L 0                    k=1                   k=1
                                                +
               Since the origin belongs to the domain Ω , it follows that
                                          =0,   k =1, ... , m,        =2π.
                                   [arg t] L k                 [arg t] L 0
               Therefore,
                                                 m


                                              –ν
                                                        ν k
                                         arg t     (t – z k ) D(t)  = 0.                   (55)
                                                k=1             L
                ◦
               1 . The Homogeneous Problem. Let us rewrite the boundary condition
                                                 +
                                                           –
                                                Φ (t)= D(t)Φ (t)                           (56)
               in the form                              m
                                             t ν      –ν                 –
                                   +
                                                                ν k
                                  Φ (t)=             t    (t – z k ) D(t) Φ (t).           (57)
                                         m
                                                        k=1
                                           (t – z k ) ν k
                                         k=1
                   The function t –ν  m   (t – z k ) D(t) has zero index on each of the contours L k (k =1, ... , m),
                                         ν k
                                k=1
               and hence it can be expressed as the ratio
                                                                +
                                              m               e G (t)
                                           t –ν    (t – z k ) D(t)=  ,                     (58)
                                                      ν k
                                                              e G – (t)
                                             k=1
               where
                                                      m
                                          1         –ν                 dτ


                                                              ν k
                                   G(z)=       ln τ     (τ – z k ) D(τ)   .                (59)
                                         2πi  L                       τ – z
                                                      k=1
                   The canonical function of the problem is given by the formulas
                                          m
                                                       +
                                                                        –
                                                  –ν k G (z)  –      –ν G (z)
                                    +
                                  X (z)=    (z – z k )  e  ,  X (z)= z e   .               (60)
                                          k=1
                   Now the boundary condition (57) can be rewritten in the form
                                                  +
                                                          –
                                                 Φ (t)  Φ (t)
                                                      =      .
                                                          –
                                                  +
                                                X (t)   X (t)
                 © 1998 by CRC Press LLC







               © 1998 by CRC Press LLC
                                                                                                             Page 622
   634   635   636   637   638   639   640   641   642   643   644