Page 35 - Handbook of Deep Learning in Biomedical Engineering Techniques and Applications
P. 35
Chapter 1 Congruence of deep learning in biomedical engineering 23
[19] P. Dutkowski, M. Linecker, M.L. DeOliveira, B. Mullhaupt, P.A. Clavien,
Challenges to liver transplantation and strategies to improve outcomes,
J. Gastroenterol. 148 (2015) 307e23.
[20] G. Han, F. Liu, Y. Tian, H. Wang, J. Wang, Y. Wang, Detection of glucose
concentration in a turbid medium using a stacked auto-encoder deep
neural network, Infrared Phys. Technol. 105 (2020) 103198, https://doi.org/
10.1016/j.infrared.2020.103198.
[21] V. Vukotic, V. Chappelier, T. Furon, Are Deep Neural Networks good for
blind image watermarking? 2018, in: IEEE International Workshop on
Information Forensics and Security (WIFS), 2018, https://doi.org/10.1109/
wifs.2018.8630768.
[22] H. Kandi, D. Mishra, S.R.K.S. Gorthi, Exploring the learning capabilities of
convolutional neural networks for robust image watermarking, Comput.
Secur. 65 (2017) 247e268, https://doi.org/10.1016/j.cose.2016.11.016.
[23] A.M. Hafiz, G.M. Bhat, A survey of deep learning techniques for medical
diagnosis, Adv. Intell. Syst. Comput. (2019) 161e170, https://doi.org/
10.1007/978-981-13-7166-0_16.
[24] P.M. Siva Raja, A.V. rani, Brain tumor classification using a hybrid deep
autoencoder with Bayesian fuzzy clustering-based segmentation approach,
Biocybern. Biomed. Eng. (2020), https://doi.org/10.1016/j.bbe.2020.01.006.
[25] M. Havaei, A. Davy, D. Warde-Farley, A. Biard, A. Courville, Y. Bengio, et al.,
Brain tumor segmentation with deep neural networks, Med. Image Anal. 35
(2017) 18e31, https://doi.org/10.1016/j.media.2016.05.004.
[26] S.A. Abdelaziz Ismael, A. Mohammed, H. Hefny, An enhanced deep learning
approach for brain cancer MRI images classification using residual
networks, Artif. Intell. Med. (2019), 101779, http://doi.org/10.1016/j.artmed.
2019.101779.
[27] N. Ghassemi, A. Shoeibi, M. Rouhani, Deep neural network with generative
adversarial networks pre-training for brain tumor classification based on
MR images, Biomed. Signal Process Contr. 57 (2020) 101678, https://
doi.org/10.1016/j.bspc.2019.101678.
[28] J. Amin, M. Sharif, N. Gul, M. Yasmin, S.A. Shad, Brain tumor classification
based on DWT fusion of MRI sequences using convolutional neural
network, Pattern Recogn. Lett. (2019), https://doi.org/10.1016/
j.patrec.2019.11.016.
[29] T. Saba, A. Sameh Mohamed, M. El-Affendi, J. Amin, M. Sharif, Brain tumor
detection using fusion of hand crafted and deep learning features, Cognit.
Syst. Res. (2019), https://doi.org/10.1016/j.cogsys.2019.09.007.
[30] M. To gaçar, B. Ergen, Z. Cömert, BrainMRNet: brain tumor detection using
magnetic resonance images with a novel convolutional neural network
model, Med. Hypotheses (2019), 109531, http://doi.org/10.1016/j.mehy.
2019.109531.
[31] J. Amin, M. Sharif, N. Gul, M. Raza, M.A. Anjum, M.W. Nisar, et al., Brain
tumor detection by using stacked autoencoders in deep learning, J. Med.
Syst. 44 (2) (2019), https://doi.org/10.1007/s10916-019-1483-2.
[32] S. Nema, A. Dudhane, S. Murala, S. Naidu, RescueNet: an unpaired GAN for
brain tumor segmentation, Biomed. Signal Process Contr. 55 (2020) 101641,
https://doi.org/10.1016/j.bspc.2019.10164.
[33] https://medium.com/analytics-vidhya/.
[34] K.J. Geras, S. Wolfson, Y. Shen, N. Wu, S. Kim, E. Kim, et al., High-
resolution Breast Cancer Screening with Multi-View Deep Convolutional
Neural Networks, 2017 arXiv preprint arXiv:1703.07047.