Page 35 - Handbook of Deep Learning in Biomedical Engineering Techniques and Applications
P. 35

Chapter 1 Congruence of deep learning in biomedical engineering  23




               [19] P. Dutkowski, M. Linecker, M.L. DeOliveira, B. Mullhaupt, P.A. Clavien,
                   Challenges to liver transplantation and strategies to improve outcomes,
                   J. Gastroenterol. 148 (2015) 307e23.
               [20] G. Han, F. Liu, Y. Tian, H. Wang, J. Wang, Y. Wang, Detection of glucose
                   concentration in a turbid medium using a stacked auto-encoder deep
                   neural network, Infrared Phys. Technol. 105 (2020) 103198, https://doi.org/
                   10.1016/j.infrared.2020.103198.
               [21] V. Vukotic, V. Chappelier, T. Furon, Are Deep Neural Networks good for
                   blind image watermarking? 2018, in: IEEE International Workshop on
                   Information Forensics and Security (WIFS), 2018, https://doi.org/10.1109/
                   wifs.2018.8630768.
               [22] H. Kandi, D. Mishra, S.R.K.S. Gorthi, Exploring the learning capabilities of
                   convolutional neural networks for robust image watermarking, Comput.
                   Secur. 65 (2017) 247e268, https://doi.org/10.1016/j.cose.2016.11.016.
               [23] A.M. Hafiz, G.M. Bhat, A survey of deep learning techniques for medical
                   diagnosis, Adv. Intell. Syst. Comput. (2019) 161e170, https://doi.org/
                   10.1007/978-981-13-7166-0_16.
               [24] P.M. Siva Raja, A.V. rani, Brain tumor classification using a hybrid deep
                   autoencoder with Bayesian fuzzy clustering-based segmentation approach,
                   Biocybern. Biomed. Eng. (2020), https://doi.org/10.1016/j.bbe.2020.01.006.
               [25] M. Havaei, A. Davy, D. Warde-Farley, A. Biard, A. Courville, Y. Bengio, et al.,
                   Brain tumor segmentation with deep neural networks, Med. Image Anal. 35
                   (2017) 18e31, https://doi.org/10.1016/j.media.2016.05.004.
               [26] S.A. Abdelaziz Ismael, A. Mohammed, H. Hefny, An enhanced deep learning
                   approach for brain cancer MRI images classification using residual
                   networks, Artif. Intell. Med. (2019), 101779, http://doi.org/10.1016/j.artmed.
                   2019.101779.
               [27] N. Ghassemi, A. Shoeibi, M. Rouhani, Deep neural network with generative
                   adversarial networks pre-training for brain tumor classification based on
                   MR images, Biomed. Signal Process Contr. 57 (2020) 101678, https://
                   doi.org/10.1016/j.bspc.2019.101678.
               [28] J. Amin, M. Sharif, N. Gul, M. Yasmin, S.A. Shad, Brain tumor classification
                   based on DWT fusion of MRI sequences using convolutional neural
                   network, Pattern Recogn. Lett. (2019), https://doi.org/10.1016/
                   j.patrec.2019.11.016.
               [29] T. Saba, A. Sameh Mohamed, M. El-Affendi, J. Amin, M. Sharif, Brain tumor
                   detection using fusion of hand crafted and deep learning features, Cognit.
                   Syst. Res. (2019), https://doi.org/10.1016/j.cogsys.2019.09.007.
               [30] M. To  gaçar, B. Ergen, Z. Cömert, BrainMRNet: brain tumor detection using
                   magnetic resonance images with a novel convolutional neural network
                   model, Med. Hypotheses (2019), 109531, http://doi.org/10.1016/j.mehy.
                   2019.109531.
               [31] J. Amin, M. Sharif, N. Gul, M. Raza, M.A. Anjum, M.W. Nisar, et al., Brain
                   tumor detection by using stacked autoencoders in deep learning, J. Med.
                   Syst. 44 (2) (2019), https://doi.org/10.1007/s10916-019-1483-2.
               [32] S. Nema, A. Dudhane, S. Murala, S. Naidu, RescueNet: an unpaired GAN for
                   brain tumor segmentation, Biomed. Signal Process Contr. 55 (2020) 101641,
                   https://doi.org/10.1016/j.bspc.2019.10164.
               [33] https://medium.com/analytics-vidhya/.
               [34] K.J. Geras, S. Wolfson, Y. Shen, N. Wu, S. Kim, E. Kim, et al., High-
                   resolution Breast Cancer Screening with Multi-View Deep Convolutional
                   Neural Networks, 2017 arXiv preprint arXiv:1703.07047.
   30   31   32   33   34   35   36   37   38   39   40