Page 248 -
P. 248

5.7. BILINEAR AND QUADRATIC FORMS                   215

                       5.7.2-2. Bilinear forms in finite-dimensional spaces.

                       Any bilinear form B(x, y)onan n-dimensional linear space with a given basis e 1 , ... , e n
                       can be uniquely represented as

                                                      n

                                            B(x, y)=    b ij ξ i η j ,  b ij = B(e i , e j ),
                                                    i,j=1

                       and ξ i , η j are the coordinates of the vectors x and y in the given basis. The matrix B ≡ [b ij ]
                       of size n × n is called the matrix of the bilinear form in the given basis e 1 , ... , e n .The
                       bilinear form can also be represented as

                                                         T
                                             T
                                  B(x, y)= X BY ,      X ≡ (ξ 1 , ... , ξ n ),  Y  T  ≡ (η 1 , ... , η n ).
                          Remark. Any square matrix B ≡ [b ij] can be regarded as a matrix of some bilinear form in a given basis
                       e 1, ... , e n. If this matrix is symmetric (skew-symmetric), then the bilinear form is symmetric (skew-symmetric).
                          The rank of a bilinear form B(x, y)on a finite-dimensional linear space L is defined as
                       the rank of the matrix B of this form in any basis: rank B(x, y)= rank (B).
                          A bilinear form on a finite dimensional space V is said to be nondegenerate (degenerate)
                       if its rank is equal to (is less than) the dimension of the space V, i.e., rank B(x, y)=dim V
                       (rank B(x, y)<dim V).



                       5.7.2-3. Transformation of the matrix of a bilinear form in another basis.
                       Suppose that the transition from a basis e 1 , ... , e n to a basis 2 e 1 , ... , 2 e n is determined by
                       the matrix U ≡ [u ij ]ofsize n × n,i.e.

                                                   n

                                              2 e i =  u ij e j  (i = 1, 2, ... , n).
                                                  j=1

                          THEOREM. The matrices B and B of a bilinear form B(x, y) in the bases e 1 , ... , e n and
                                                      2
                      2 e 1 , ... , 2 e n , respectively, are related by

                                                              T
                                                        B = U BU.
                                                         2


                       5.7.2-4. Multilinear forms.
                       A multilinear form on a linear space V is a scalar function B(x 1 , ... , x p )of p arguments
                       x 1 , ... , x p   V, which is linear in each argument for fixed values of the other arguments.
                          A multilinear form B(x, y)is said to be symmetric if for any two arguments x l and x l ,
                       we have
                                   B(x 1 , ... , x k , ... , x l , ... , x p )= B(x 1 , ... , x l , ... , x k , ... , x p ).
                       A multilinear form B(x, y)issaid tobe skew-symmetric if for any two arguments x l and x l ,
                       we have
                                   B(x 1 , ... , x k , ... , x l , ... , x p )=–B(x 1 , ... , x l , ... , x k , ... , x p ).
   243   244   245   246   247   248   249   250   251   252   253