Page 304 - Hardware Implementation of Finite-Field Arithmetic
P. 304

284    Cha pte r  Ni ne


                 for j in 0 .. i loop
                   c(m-1-i) := m2xor(c(m-1-i),m2and(ctr(i-j),f(m-j)));
                 end loop;
               end loop;
                  An executable Ada file triangular_mult.adb, including Algorithm
               9.8, is available at www.arithmetic-circuits.org.




          9.3 References
               [Ber82] E. R. Berlekamp. “Bit-Serial Reed-Solomon Encoders.” IEEE Transactions on
                  Computers, vol. 82, pp. 869–874, November 1982.
               [Fen93] S. T. J. Fenn. “Optimised  Algorithms and Circuit  Architectures for
                  Performing Finite Field Arithmetic in Reed-Solomon Codecs.” PhD Thesis,
                  University of Huddersfield, 1993.
               [FBF97] R. Furness, M. Benaissa, and S. T. J. Fenn. “Generalized triangular basis
                  multipliers for the design of Reed-Solomon codecs.” IEEE Workshop on Signal
                  Processing Systems—SIPS 97, pp. 202–211, November 1997.
               [FBT96a] S. T. J. Fenn, M. Benaissa, and D. Taylor. “GF(2 ) Multiplication and
                                                         n
                  Division Over the Dual Basis.” IEEE Transactions on Computers, vol. 45, no. 3,
                  pp. 319–327, March 1996.
               [FBT96b] S. T. J. Fenn, M. Benaissa, and D. Taylor. “Finite Field Inversion over the
                  Dual Basis.” IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
                  vol. 4, no. 1, pp. 134–137, March 1996.
               [Has95] M. A. Hasan. “Shift Register Synthesis for Multiplicative Inversion over
                  GF(2 ).” Proceedings of International Symposium of Information Theory, p. 49,
                     m
                  1995.
               [Has98] M. A. Hasan. “Double-Basis Multiplicative Inversion over GF(2 ).” IEEE
                                                                  m
                  Transactions on Computers, vol. 47, no. 9, pp. 960–970, September 1998.
               [HB92] M. A. Hasan and V. K. Bhargava. “Bit-Serial Systolic Divider and Multiplier
                                  m
                  for Finite Fields GF(2 ).” IEEE Transactions on Computers, vol. 41, no. 8,
                  pp. 972–980, August 1992.
               [HB95] M. A. Hasan and V. K. Bhargava. “Architecture for a low complexity rate-
                  adaptive Reed-Solomon encoder.” IEEE Transactions on Computers, vol. 44,
                  no. 6, pp. 938–942, June 1995.
               [HTDR88] I. S. Hsu, T. K. Truong, L. J. Deutsch, and I. S. Reed. “A Comparison
                  of VLSI Architecture of Finite Field Multipliers Using Dual, Normal, or
                  Standard Bases.” IEEE Transactions on Computers, vol. 37, no. 6, pp. 735–739,
                  June 1988.
               [HW00] M. A. Hasan and A. G. Wassal. “VLSI Algorithms, Architectures, and
                                          m
                  Implementation of a Versatile GF(2 ) Processor.” IEEE Transactions on Computers,
                  vol. 49, no. 10, pp. 1064–1073, October 2000.
               [IHT06] J. L. Imaña, R. Hermida, and F. Tirado. “Low Complexity Bit-Parallel
                  Multipliers Based on a Class of Irreducible Pentanomials.” IEEE Transactions
                  on VLSI Systems, vol. 14, no. 12, pp. 1388–1393, December 2006.
               [IST06] J. L. Imaña, J. M. Sánchez, and F. Tirado. “Bit-Parallel Finite Field Multipliers
                  for Irreducible Trinomials.” IEEE Transactions on Computers, vol. 55, no. 5,
                  pp. 520–533, May 2006.
               [KL99] B. S. Kaliski and M. Liskov. “Efficient Finite Field Basis Conversion Involving
                  Dual Basis.” Proceedings of Cryptographic Hardware and Embedded Systems (CHES
                  1999), LNCS 1717, pp. 135–143, 1999.
               [LN83] R. Lidl and H. Niederreiter. Finite Fields. Addison-Wesley, Reading, MA,
                  1983.
               [MKW89] M. Morii, M. Kasahara, and D. L. Whiting. “Efficient Bit-Serial
                  Multiplication and the Discrete-Time Wiener-Hopft Equation over Finite
   299   300   301   302   303   304   305   306   307   308   309