Page 63 - Instant notes
P. 63

Thermochemistry     49




























                              Fig. 4. The Born-Haber cycle for KCl.

        The enthalpy change over the complete cycle must equal zero, since the enthalpy is a
        state function. Therefore:
           −∆H f(KCl)+∆H s(K)+∆H i(K)+½∆H d(Cl 2)+∆H ea(Cl)+∆H 1(KCl)=0

        Rearranging gives:
           ∆H 1(KCl)=∆H f(KCl)−∆H s(K)−∆H i(K)−½∆H d(Cl 2)−∆H ea(Cl)


        The terms on the right hand side of this equation may all be obtained by direct physical or
        spectroscopic methods, giving a value for the lattice enthalpy:
                                                     −1
           ∆H 1(KCl)=−431–89–419−124−(−349)=−714 kJ mol .
   58   59   60   61   62   63   64   65   66   67   68