Page 107 - Intro to Tensor Calculus
P. 107

102























                                          Figure 1.3-18 Oblique cylindrical coordinates.



                                                                                                  r
              I 6.  For the change d~ given in problem 5, show the elemental parallelepiped with diagonal d~ has:
                                   r
                                           q
                (a) the element of area dS 1 =  g 22 g 33 − g 2  dvdw in the u =constant surface.
                                                     23
                                           q
                (b) The element of area dS 2 =  g 33 g 11 − g 2 13  dudw in the v =constant surface.
                                           q
                                                     2
                (c) the element of area dS 3 =  g 11 g 22 − g 12  dudv in the w =constant surface.

                (d) What do the above elements of area reduce to in the special case the curvilinear coordinates are orthog-
                                        q
                                           ~
                               ~
                                               ~
                                                       ~
                                   ~
                                                   ~
                               |A × B| =  (A × B) · (A × B)
                   onal? Hint:          q                            .
                                                          ~ ~
                                                    ~
                                                                ~ ~
                                           ~ ~ ~
                                      =   (A · A)(B · B) − (A · B)(A · B)
              I 7.  In Cartesian coordinates you are given the affine transformation. x i = ` ij x j where
                           1                             1                         1
                      x 1 =  (5x 1 − 14x 2 +2x 3 ),  x 2 = − (2x 1 + x 2 +2x 3 ),  x 3 =  (10x 1 +2x 2 − 11x 3)
                           15                            3                         15
                (a) Show the transformation is orthogonal.
                            ~
                (b) A vector A(x 1 ,x 2 ,x 3 ) in the unbarred system has the components
                                                      2             2             2
                                             A 1 =(x 1 ) ,  A 2 =(x 2 )  A 3 =(x 3 ) .
                   Find the components of this vector in the barred system of coordinates.

              I 8.  Calculate the metric and conjugate metric tensors in cylindrical coordinates (r, θ, z).
              I 9.  Calculate the metric and conjugate metric tensors in spherical coordinates (ρ, θ, φ).
              I 10.  Calculate the metric and conjugate metric tensors in parabolic cylindrical coordinates (ξ, η, z).
              I 11.  Calculate the metric and conjugate metric components in elliptic cylindrical coordinates (ξ, η, z).
              I 12.  Calculate the metric and conjugate metric components for the oblique cylindrical coordinates (r, φ, η),
               illustrated in figure 1.3-18, where x = r cos φ,  y = r sin φ + η cos α,  z = η sin α and α is a parameter
                       π                 π
               0 <α ≤   . Note: When α =   cylindrical coordinates result.
                       2                 2
   102   103   104   105   106   107   108   109   110   111   112