Page 318 - Intro to Tensor Calculus
P. 318

312



                 • The particle density per unit volume

                                                                    +∞
                                                   Z               ZZZ
                                                             ~
                                                                            ~
                                       n = n(~r, t)=  dτ V f(~r, V, t)=  f(~r, V, t)dV x dV y dV z    (2.5.84)
                                                                    −∞
                   where ρ = nm is the mass density.
                 • The mean velocity
                                                        ZZ
                                                         +∞ Z
                                                       1
                                              ~
                                                             ~
                                                  ~
                                                                   ~
                                             V 1 = V =       V 1 f(~r, V 1 ,t)dV 1x dV 1y dV 1z
                                                       n
                                                         −∞
                                         ~
                   For any quantity Q = Q(V 1 ) define the barred quantity
                                                                     +∞
                                             Z                      ZZZ
                                         1                         1
                                                  ~
                                                        ~
                                                                           ~
                                                                                 ~
                           Q = Q(~r, t)=        Q(V )f(~r, V, t) dτ V =  Q(V )f(~r, V, t)dV x dV y dV z .  (2.5.85)
                                       n(~r, t)                    n
                                                                     −∞
                                       ~ F
                                                        ~
                   Further, assume that  is independent of V , then the moment of equation (2.5.83) produces the result
                                       m
                                                    3                 3
                                          ∂        X    ∂            X  F i ∂φ
                                             nφ +          nV 1i φ − n         =0                     (2.5.86)
                                          ∂t           ∂x i              m ∂V 1i
                                                   i=1               i=1
               known as the Maxwell transfer equation. The first term in equation (2.5.86) follows from the integrals
                                   Z       ~                 Z
                                      ∂f(~r, V 1 ,t)  ~    ∂       ~      ~         ∂
                                               φ(V 1 )dτ V 1  =  f(~r, V 1 ,t)φ(V 1 ) dτ V 1  =  (nφ)  (2.5.87)
                                         ∂t                ∂t                      ∂t
               where differentiation and integration have been interchanged. The second term in equation (2.5.86) follows
               from the integral
                                                                 3
                                          Z                  Z
                                                                X     ∂f
                                            ~       ~
                                            V 1 ∇ ~r fφ(V 1 )dτ V 1  =  V 1i  i  φdτ V 1
                                                                      ∂x
                                                                i=1
                                                              3      Z
                                                             X    ∂
                                                           =            V 1i φf dτ V 1                (2.5.88)
                                                                 ∂x i
                                                              i=1
                                                              3
                                                             X    ∂
                                                           =         nV 1i φ .
                                                                 ∂x i
                                                              i=1
               The third term in equation (2.5.86) is obtained from the following integral where integration by parts is
               employed
                                      Z  ~             Z  3
                                        F                X    F i ∂f
                                          ∇ ~ V 1  fφ dτ V 1  =       φdτ V 1
                                        m                     m ∂V 1i
                                                         i=1
                                                        +∞
                                                       ZZZ   3
                                                            X     F i ∂f
                                                     =         φ           dV 1x dV 1y dV 1y
                                                                  m ∂V 1i
                                                            i=1                                       (2.5.89)
                                                        −∞
                                                         Z
                                                             ∂   F i
                                                     = −            φ fdτ V 1
                                                           ∂V 1i  m

                                                           ∂    F i      F i ∂φ
                                                     = −n         φ  = −
                                                          ∂V 1i  m       m ∂V 1i
   313   314   315   316   317   318   319   320   321   322   323