Page 55 - Intro to Tensor Calculus
P. 55

51



               If a dyadic equals its conjugate A = A c ,then A ij = A ji and the dyadic is called symmetric. If a dyadic
               equals the negative of its conjugate A = −A c ,then A ij = −A ji and the dyadic is called skew-symmetric. A
               special dyadic called the identical dyadic or idemfactor is defined by

                                                   J = b e 1 b e 1 + b e 2 b e 2 + b e 3 b e 3 .
                                                                                                ~
               This dyadic has the property that pre or post dot product multiplication of J with a vector V produces the
                           ~
               same vector V. For example,
                                         ~
                                         V · J =(V 1 b e 1 + V 2 b e 2 + V 3 b e 3 ) · J
                                                                                       ~
                                              = V 1 b e 1 · b e 1 b e 1 + V 2 b e 2 · b e 2 b e 2 + V 3 b e 3 · b e 3 b e 3 = V
                                            ~
                                    and J · V = J · (V 1 b e 1 + V 2 b e 2 + V 3 b e 3 )
                                                                                       ~
                                              = V 1 b e 1 b e 1 · b e 1 + V 2 b e 2 b e 2 · b e 2 + V 3 b e 3 b e 3 · b e 3 = V
                   A dyadic operation often used in physics and chemistry is the double dot product A : B where A and
               B are both dyadics. Here both dyadics are expanded using the distributive law of multiplication, and then
               each unit dyad pair b e i b e j : b e m b e n are combined according to the rule
                                               b e i b e j : b e m b e n =( b e i · b e m )( b e j · b e n ).

               For example, if A = A ij b e i b e j and B = B ij b e i b e j , then the double dot product A : B is calculated as follows.
                        A : B =(A ij b e i b e j ):(B mn b e m b e n )= A ij B mn ( b e i b e j : b e m b e n )= A ij B mn ( b e i · b e m )( b e j · b e n )
                             = A ij B mn δ im δ jn = A mj B mj

                             = A 11 B 11 + A 12 B 12 + A 13 B 13
                             + A 21 B 21 + A 22 B 22 + A 23 B 23

                             + A 31 B 31 + A 32 B 32 + A 33 B 33
                   When operating with dyads, triads and polyads, there is a definite order to the way vectors and polyad
                                                                     ~
                                                        ~
               components are represented. For example, for A = A i b e i and B = B i b e i vectors with outer product
                                                    ~ ~
                                                    AB = A m B n b e m b e n = φ
               there is produced the dyadic φ with components A m B n . In comparison, the outer product
                                                    ~ ~
                                                    BA = B m A n b e m b e n = ψ
               produces the dyadic ψ with components B m A n . That is
                                                ~ ~
                                            φ = AB =A 1 B 1 b e 1 b e 1 + A 1 B 2 b e 1 b e 2 + A 1 B 3 b e 1 b e 3
                                                     A 2 B 1 b e 2 b e 1 + A 2 B 2 b e 2 b e 2 + A 2 B 3 b e 2 b e 3

                                                     A 3 B 1 b e 3 b e 1 + A 3 B 2 b e 3 b e 2 + A 3 B 3 b e 3 b e 3
                                                ~ ~
                                       and ψ = BA =B 1 A 1 b e 1 b e 1 + B 1 A 2 b e 1 b e 2 + B 1 A 3 b e 1 b e 3
                                                     B 2 A 1 b e 2 b e 1 + B 2 A 2 b e 2 b e 2 + B 2 A 3 b e 2 b e 3

                                                     B 3 A 1 b e 3 b e 1 + B 3 A 2 b e 3 b e 2 + B 3 A 3 b e 3 b e 3
               are different dyadics.
                                                             ~
                   The scalar dot product of a dyad with a vector C is defined for both pre and post multiplication as
                                                               ~
                                                                        ~
                                                                  ~ ~
                                                      ~
                                                          ~ ~
                                                   φ · C = AB · C =A(B · C)
                                                   ~
                                                                      ~ ~
                                                          ~
                                                             ~ ~
                                                                   ~
                                                   C · φ = C · AB =(C · A)B
               These products are, in general, not equal.
   50   51   52   53   54   55   56   57   58   59   60