Page 55 - Intro to Tensor Calculus
P. 55
51
If a dyadic equals its conjugate A = A c ,then A ij = A ji and the dyadic is called symmetric. If a dyadic
equals the negative of its conjugate A = −A c ,then A ij = −A ji and the dyadic is called skew-symmetric. A
special dyadic called the identical dyadic or idemfactor is defined by
J = b e 1 b e 1 + b e 2 b e 2 + b e 3 b e 3 .
~
This dyadic has the property that pre or post dot product multiplication of J with a vector V produces the
~
same vector V. For example,
~
V · J =(V 1 b e 1 + V 2 b e 2 + V 3 b e 3 ) · J
~
= V 1 b e 1 · b e 1 b e 1 + V 2 b e 2 · b e 2 b e 2 + V 3 b e 3 · b e 3 b e 3 = V
~
and J · V = J · (V 1 b e 1 + V 2 b e 2 + V 3 b e 3 )
~
= V 1 b e 1 b e 1 · b e 1 + V 2 b e 2 b e 2 · b e 2 + V 3 b e 3 b e 3 · b e 3 = V
A dyadic operation often used in physics and chemistry is the double dot product A : B where A and
B are both dyadics. Here both dyadics are expanded using the distributive law of multiplication, and then
each unit dyad pair b e i b e j : b e m b e n are combined according to the rule
b e i b e j : b e m b e n =( b e i · b e m )( b e j · b e n ).
For example, if A = A ij b e i b e j and B = B ij b e i b e j , then the double dot product A : B is calculated as follows.
A : B =(A ij b e i b e j ):(B mn b e m b e n )= A ij B mn ( b e i b e j : b e m b e n )= A ij B mn ( b e i · b e m )( b e j · b e n )
= A ij B mn δ im δ jn = A mj B mj
= A 11 B 11 + A 12 B 12 + A 13 B 13
+ A 21 B 21 + A 22 B 22 + A 23 B 23
+ A 31 B 31 + A 32 B 32 + A 33 B 33
When operating with dyads, triads and polyads, there is a definite order to the way vectors and polyad
~
~
components are represented. For example, for A = A i b e i and B = B i b e i vectors with outer product
~ ~
AB = A m B n b e m b e n = φ
there is produced the dyadic φ with components A m B n . In comparison, the outer product
~ ~
BA = B m A n b e m b e n = ψ
produces the dyadic ψ with components B m A n . That is
~ ~
φ = AB =A 1 B 1 b e 1 b e 1 + A 1 B 2 b e 1 b e 2 + A 1 B 3 b e 1 b e 3
A 2 B 1 b e 2 b e 1 + A 2 B 2 b e 2 b e 2 + A 2 B 3 b e 2 b e 3
A 3 B 1 b e 3 b e 1 + A 3 B 2 b e 3 b e 2 + A 3 B 3 b e 3 b e 3
~ ~
and ψ = BA =B 1 A 1 b e 1 b e 1 + B 1 A 2 b e 1 b e 2 + B 1 A 3 b e 1 b e 3
B 2 A 1 b e 2 b e 1 + B 2 A 2 b e 2 b e 2 + B 2 A 3 b e 2 b e 3
B 3 A 1 b e 3 b e 1 + B 3 A 2 b e 3 b e 2 + B 3 A 3 b e 3 b e 3
are different dyadics.
~
The scalar dot product of a dyad with a vector C is defined for both pre and post multiplication as
~
~
~ ~
~
~ ~
φ · C = AB · C =A(B · C)
~
~ ~
~
~ ~
~
C · φ = C · AB =(C · A)B
These products are, in general, not equal.