Page 135 - INTRODUCTION TO THE CALCULUS OF VARIATIONS
P. 135

122                                                         Regularity

                       where γ denotes a constant independent of h. Returning to (4.14), we choose

                                                         2u (x) − u (x + h) − u (x − h)
                                 v (x)= (D −h (D h u)) (x)=
                                                                      2
                                                                    |h|
                                                      n
                                                                    n
                       and observe that, since u ∈ W 1,2  (R ), v ∈ W  1,2  (R ). We therefore find
                         Z                                 Z
                             h∇u (x); ∇ (D −h (D h u)) (x)i dx =  g (x)(D −h (D h u)) (x) dx .  (4.15)
                          R n                               R n
                       Let us express differently the left hand side of the above identity and write
                                    Z
                                       h∇u; ∇ (D −h (D h u))i dx
                                     R n
                                        Z
                                     1
                                =          h∇u (x);2∇u (x) −∇u (x + h) −∇u (x − h)i dx
                                      2
                                    |h|  R n
                                        Z
                                     2     h       2                    i
                                =           |∇u (x)| − h∇u (x); ∇u (x + h)i dx
                                      2
                                    |h|  R n
                                        Z
                                     1                        2
                                =          |∇u (x + h) −∇u (x)| dx
                                      2
                                    |h|  R n
                       whereweused, forpassing from the first to the second identity and from the
                       second to the third one, respectively
                               Z                           Z
                                  [h∇u (x); ∇u (x + h)i] dx =  [h∇u (x); ∇u (x − h)i] dx
                                R n                         R n
                                        Z                Z
                                                  2                    2
                                           |∇u (x)| dx =    |∇u (x + h)| dx .
                                         R n              R n
                       Returning to (4.15) we just found that
                        Z                                        Z
                                                              1                        2
                            h∇u (x); ∇ (D −h (D h u)) (x)i dx =     |∇u (x + h) −∇u (x)| dx
                                                               2
                         R n                                 |h|  R n
                                                             Z
                                                                            2
                                                         =      |(D h ∇u)(x)| dx
                                                              R n
                                                             Z
                                                         =      g (x)(D −h (D h u)) (x) dx .
                                                              R n
                       Applying Cauchy-Schwarz inequality and the properties of the operator D h we
                       get
                                         2
                                 kD h ∇uk L 2 ≤ kgk L 2 kD −h (D h u)k L 2 ≤ kgk L 2 kD h ∇uk L 2
                       and hence
                                                kD h ∇uk L 2 ≤ kgk L 2 .
   130   131   132   133   134   135   136   137   138   139   140