Page 171 - INTRODUCTION TO THE CALCULUS OF VARIATIONS
P. 171

158                                             Isoperimetric inequality

                                                                              1,1
                       Theorem 6.4 (Isoperimetric inequality). Let for u, v ∈ W per  (a, b)
                                                 Z
                                                   b p
                                      L (u, v)=       u + v dx
                                                            02
                                                        02
                                                  a
                                                   Z  b              Z  b
                                                  1
                                     M (u, v)=        (uv − vu ) dx =   uv dx .
                                                              0
                                                         0
                                                                           0
                                                  2  a                a
                       Then
                                            2                          1,1
                                     [L (u, v)] − 4πM (u, v) ≥ 0, ∀u, v ∈ W per  (a, b) .
                                                 1,1
                                                            1
                       Moreover, among all u, v ∈ W per  (a, b) ∩ C ([a, b]), equality holds if and only if
                                                2            2    2
                                      (u (x) − r 1 ) +(v (x) − r 2 ) = r , ∀x ∈ [a, b]
                                                                  3
                       where r 1 ,r 2 ,r 3 ∈ R are constants.
                       Remark 6.5 The uniqueness holds under fewer regularity hypotheses that we
                       do not discuss here. We, however, point out that the very same proof for the
                                                   1,1
                       uniqueness is valid for u, v ∈ W per  (a, b) ∩ C 1 piec  ([a, b]).
                          Proof. We divide the proof into two steps.
                          Step 1.We first prove the theorem under the further restriction that u, v ∈
                                    1
                       W 1,1  (a, b) ∩ C ([a, b]). We will also assume that
                         per
                                             02
                                                    02
                                           u (x)+ v (x) > 0, ∀x ∈ [a, b] .
                       This hypothesis is unnecessary and can be removed, see Exercise 6.2.3.
                          We start by reparametrizing the curve by a multiple of its arc length, namely
                                    ⎧                        Z
                                                               x  √
                                    ⎪                     2        02   02
                                    ⎪    y = η (x)= −1+           u + v dx
                                    ⎨
                                                        L(u,v)
                                                               a
                                    ⎪
                                    ⎪          ¡      ¢              ¡      ¢
                                    ⎩            −1                    −1
                                       ϕ (y)= u η   (y) and ψ (y)= v η   (y) .
                                                              1
                       It is easy to see that ϕ, ψ ∈ W 1,2  (−1, 1) ∩ C ([−1, 1]) and
                                                 per
                                       q                 L (u, v)
                                                  02
                                          02
                                         ϕ (y)+ ψ (y)=          , ∀y ∈ [−1, 1] .
                                                            2
                       We therefore have
                                     Z                        µ Z  1                  ¶1/2
                                       1 q                          £              ¤
                                                                      02
                                                    02
                                                                              02
                                            02
                          L (u, v)=        ϕ (y)+ ψ (y) dy =   2     ϕ (y)+ ψ (y) dy
                                      −1                          −1
                                     Z  1
                                               0
                         M (u, v)=       ϕ (y) ψ (y) dy .
                                      −1
   166   167   168   169   170   171   172   173   174   175   176