Page 213 - INTRODUCTION TO THE CALCULUS OF VARIATIONS
P. 213

200                                            Solutions to the Exercises

                       and the divergence theorem to get

                                      ZZ               Z
                                                           ¡             ¢
                                          det ∇udxdy =      ϕψ ν 1 − ϕψ ν 2 dσ
                                                              y       x
                                        Ω               ∂Ω
                       where ν =(ν 1 ,ν 2 ) is the outward unit normal to ∂Ω.Since ϕ = α on ∂Ω,we
                       have, applying twice the divergence theorem,
                       ZZ                  ZZ
                                               h               i
                                                ¡    ¢
                           det ∇udxdy   =        αψ    − (αψ )   dxdy
                                                    y x     x y
                         Ω                   Ω
                                           ZZ                          Z
                                               h               i
                                        =       (α x ψ) − (α y ψ)  dxdy =  (α x ψν 2 − α y ψν 1 ) dσ .
                                                     y        x
                                             Ω                          ∂Ω
                       Since ψ = β on ∂Ω, we obtain, using again the divergence theorem, that
                           ZZ                ZZ                          ZZ
                                                 h              i
                               det ∇udxdy =       (α x β) − (α y β)  dxdy =  det ∇vdxdy.
                                                       y       x
                              Ω                Ω                           Ω

                          Step 2. We first regularize v, meaning that for every  > 0 we find v ∈
                          ¡    ¢
                       C  2  Ω; R 2  so that

                                                  kv − v k  1,p ≤  .
                                                         W
                                     1,p  ¡  2  ¢                 ¡    2 ¢
                       Since u − v ∈ W   Ω; R ,wecan find w ∈ C  ∞  Ω; R   so that
                                     0                          0

                                               k(u − v) − w k W 1,p ≤  .
                                                                   ¡   2  ¢





                                                                 2
                       Define u = v + w and observe that u ,v ∈ C    Ω; R ,with u = v on ∂Ω,
                       and

                                   ku − u k  1,p = k(u − v) − w +(v − v )k  1,p ≤ 2 .
                                          W                            W
                       Using Exercise 3.5.4 below, we deduce that there exists α 1 (independent of  )so
                       that

                                 kdet ∇u − det ∇u k L p/2 , kdet ∇v − det ∇v k L p/2 ≤ α 1  .
                       Combining Step 1 with the above estimates we obtain that there exists a constant
                       α 2 (independent of  ) such that
                             ¯ZZ                       ¯  ¯ZZ                         ¯
                             ¯                         ¯  ¯                           ¯
                                                       ¯
                             ¯    (det ∇u − det ∇v) dxdy ≤  ¯   (det ∇u − det ∇v ) dxdy ¯
                             ¯                         ¯  ¯                           ¯
                                 Ω                            Ω
                          ¯ZZ                        ¯   ¯ZZ                       ¯
                          ¯                          ¯   ¯                         ¯


                         +  ¯   (det ∇u − det ∇u ) dxdy +  ¯  (det ∇v − det ∇v) dxdy ≤ α 2  .
                                                     ¯
                                                                                   ¯
                          ¯                          ¯   ¯                         ¯
                              Ω                              Ω
                       Since   is arbitrary we have indeed the result.
   208   209   210   211   212   213   214   215   216   217   218