Page 70 - INTRODUCTION TO THE CALCULUS OF VARIATIONS
P. 70

Euler-Lagrange equation                                            57

                2.2.1   Exercises
                                                                                   N
                Exercise 2.2.1 Generalize Theorem 2.1 to the case where u :[a, b] → R ,
                N ≥ 1.

                Exercise 2.2.2 Generalize Theorem 2.1 to the case where u :[a, b] → R and
                                     (                                  )
                                             Z
                                               b ³                 ´
                           (P)   inf  I (u)=    f x, u (x) , ..., u (n)  (x) dx
                                 u∈X
                                              a
                          ©                                                  ª
                                n
                where X = u ∈ C ([a, b]) : u (j)  (a)= α j ,u (j)  (b)= β , 0 ≤ j ≤ n − 1 .
                                                               j
                Exercise 2.2.3 (i) Find the appropriate formulation of Theorem 2.1 when u :
                [a, b] → R and
                                        (                            )
                                                  b
                                                Z
                                                             0
                              (P)   inf  I (u)=    f (x, u (x) u (x)) dx
                                    u∈X
                                                 a
                          ©                     ª
                                1
                where X = u ∈ C ([a, b]) : u (a)= α , i.e. we leave one of the end points free.
                   (ii) Similar question, when we leave both end points free; i.e. when we min-
                             1
                imize I over C ([a, b]).
                Exercise 2.2.4 (Lagrange multiplier). Generalize Theorem 2.1 in the fol-
                lowing case where u :[a, b] → R,
                                       (                            )
                                               Z  b
                                                             0
                             (P)   inf  I (u)=    f (x, u (x) ,u (x)) dx  ,
                                   u∈X
                                                a
                      (                                                          )
                                                          b
                                                        Z
                             1
                  X =   u ∈ C ([a, b]) : u (a)= α, u (b)= β,  g (x, u (x) ,u (x)) dx =0
                                                                      0
                                                         a
                          2
                where g ∈ C ([a, b] × R × R).
                                                                3
                Exercise 2.2.5 (Second variation of I).Let f ∈ C ([a, b] × R × R) and
                                       (                             )
                                                Z  b
                                                              0
                              (P)   inf  I (u)=    f (x, u (x) ,u (x)) dx
                                    u∈X          a
                          ©     1                         ª               2
                where X = u ∈ C ([a, b]) : u (a)= α, u (b)= β .Let u ∈ X ∩ C ([a, b]) be a
                minimizer for (P). Show that the following inequality
                      Z  b
                         £            2                               02  ¤
                          f uu (x, u, u ) v +2f uξ (x, u, u ) vv + f ξξ (x, u, u ) v  dx ≥ 0
                                                                   0
                                                   0
                                   0
                                                       0
                       a
   65   66   67   68   69   70   71   72   73   74   75