Page 350 - Introduction to Computational Fluid Dynamics
P. 350
P1: ICD/GKJ
CB908/Date
0521853265appc
329
APPENDIX C. 2D CARTESIAN CODE
90 P2: IWV CONTINUE 0 521 85326 5 May 25, 2005 11:59
1000 CONTINUE
RETURN
END
C **************************************
SUBROUTINE OMEGA
INCLUDE ’COM2D.FOR’
C **************************************
C SOLVE FOR MASSFRACTION
CALL COEF(0,SC,0.9)
C BOUNDARY CONDITIONS
DO 2 J=2,JNM
AW(2,J)=0.0
O(1,J)=O(2,J)
AE(INM,J)=0.0
O(IN,J)=O(INM,J)
IF(J.LT.JB1)THEN
AE(IB1-1,J)=0.0
O(IB1,J)=O(IB1-1,J)
AW(IB2,J)=0.0
O(IB2-1,J)=O(IB2,J)
ENDIF
2 CONTINUE
DO 3 I=2,INM
C NORTH WALL
AN(I,JNM)=0.0
O(I,JN)=O(I,JNM)
C TIP WALL
IF(I.GT.IB1-1.AND.I.LT.IB2)THEN
AS(I,JB1)=0.0
O(I,JB1-1)=O(I,JB1)
ENDIF
C WALL-WATER AND BRINE
IF(I.LE.IB1-1.OR.I.GE.IB2)THEN
DELTA=Y(2)-Y(1)
TERM=VIS(I,1)/DELTA/SC
OTT=OWT
IF(I.GE.IB2)OTT=OBR
B=(O(I,2)-O(I,1))/(O(I,1)-OTT)
AMW(I,1)=TERM*ALOG(1+B)
C WALL VELOCITY
V(I,1)=AMW(I,1)/RHO(I,1)