Page 512 - Introduction to Information Optics
P. 512

9.3. Number Systems and Basic Operations     497

                       LED       Encoding pattern    Decoding
                      pattern       Si Cl d            mask
                        o o      0  Has
                        o o
                                   FISH

                                   A
                                A
                       Input Si Ci Ci     Shadowgram Output


















        Fig. 9.14. Polarization optical shadow-casting design for a unified negabinary arithmetic unit [55].
        The input c* (positive carry), c^ (negative carry), and .s, (sum bit) generate the output c/t,.,
        (positive carry to the next bit position), cf+ } (negative carry to the next bit position), and the new
        sum bit s,-.




        Using the unified symbolic substitution rules in Fig. 9.13, the addition and
        subtraction are executed in parallel. From Eq. (9.11), it is understood that the
        range of representable 4-bit integral numbers expands from —10 to 5; i.e.,
        [ — 10, 5]. In the addition example, there is no overflow. However, in the
        subtraction example, a positive carry is generated out of the MSB at the third
        step. As described earlier, the arithmetic operation is performed at the digit
       level, so this does not create any problem. One can continue to utilize the
        symbolic substitution rules for the final result (the fourth step). By using spatial
        and polarization encoding and space-variant decoding technique, a polariz-
        ation optical shadow-casting system has been designed to perform negabinary
        symbolic addition and subtraction [55]. The encoding and decoding patterns
        are shown in Fig. 9.14.
          Negabinary addition and subtraction can also be performed directly by
       binary logic operations. According to Table 9.5, the binary logical expressions
       for a full-adder and full-subtractor can be obtained as shown in the following
       equations.
   507   508   509   510   511   512   513   514   515   516   517