Page 109 - Linear Algebra Done Right
P. 109

Chapter 5. Eigenvalues and Eigenvectors
                       96
                                                                                          4
                                              23.
                                                   (real) eigenvalues.
                                                   Suppose V is a real vector space and T ∈L(V) has no eigenval-
                                              24.  Give an example of an operator T ∈L(R ) such that T has no
                                                   ues. Prove that every subspace of V invariant under T has even
                                                   dimension.
   104   105   106   107   108   109   110   111   112   113   114