Page 225 - Linear Algebra Done Right
P. 225

216


                                               I =M I, (v 1 ,...,v n ), (u 1 ,...,u n ) M I, (u 1 ,...,u n ), (v 1 ,...,v n ) .
                                              Now interchange the roles of the u’s and v’s, getting

                                                              Chapter 10. Trace and Determinant


                                               I =M I, (u 1 ,...,u n ), (v 1 ,...,v n ) M I, (v 1 ,...,v n ), (u 1 ,...,u n ) .
                                              These two equations give the desired result.
                                                Now we can see how the matrix of T changes when we change
                                              bases.
                                              10.3  Theorem: Suppose T ∈L(V). Let (u 1 ,...,u n ) and (v 1 ,...,v n )

                                              be bases of V. Let A =M I, (u 1 ,...,u n ), (v 1 ,...,v n ) . Then
                                                                              −1
                                              10.4      M T, (u 1 ,...,u n ) = A  M T, (v 1 ,...,v n ) A.
                                                Proof: In 10.1, replace U and W with V, replace w j with v j , replace
                                              T with I, and replace S with T, getting


                                              10.5    M T, (u 1 ,...,u n ), (v 1 ,...,v n ) =M T, (v 1 ,...,v n ) A.
                                                Again use 10.1, this time replacing U and W with V, replacing w j
                                              with u j , and replacing S with I, getting
                                                                         −1
                                                   M T, (u 1 ,...,u n ) = A  M T, (u 1 ,...,u n ), (v 1 ,...,v n ) ,
                                              where we have used 10.2. Substituting 10.5 into the equation above
                                              gives 10.4, completing the proof.

                                              Trace


                                                Let’s examine the characteristic polynomial more closely than we
                                              did in the last two chapters. If V is an n-dimensional complex vector
                                              space and T ∈L(V), then the characteristic polynomial of T equals

                                                                    (z − λ 1 )...(z − λ n ),

                                              where λ 1 ,...,λ n are the eigenvalues of T, repeated according to multi-
                                              plicity. Expanding the polynomial above, we can write the characteristic
                                              polynomial of T in the form

                                                                                          n
                                                        n
                                              10.6     z − (λ 1 + ··· + λ n )z n−1  + ··· + (−1) (λ 1 ...λ n ).
   220   221   222   223   224   225   226   227   228   229   230