Page 306 - MATLAB an introduction with applications
P. 306

Optimization ———  291


                   if k<=0|abs(x3–x1)<TolX|abs(f3–f1)<TolFun
                   xo=x3;  fo=f3;
                   if k==0, fprintf(‘Just the best in given # of iterations’), end
                   else
                   if x3<x1
                   if f3<f1, x012=[x0 x3 x1]; f012= [f0 f3 f1];
                   else  x012=[x3 x1 x2]; f012= [f3 f1 f2];
                   end
                   else
                   if f3<=f1, x012=[x1 x3 x2]; f012= [f1 f3 f2];
                   else  x012=[x0 x1 x3]; f012= [f0 f1 f3];
                   end
                   end
                   [xo,fo]=opt_quad0(f,x012,f012,TolX,TolFun,k–1);
                   end

                   Example E5.11: Find the minimum point of the following objective function f(x) using quadratic approximation
                   method.

                                         2
                                        (x − 5)
                                   () =
                                  fx     2    − 1
                                          8
                   Solution:
                   >> clear,clf
                   >> f323=inline(‘(x.*x–5).^2/8–1’, ‘x’);
                   >> a=0;b=3;TolX=1e–6;TolFun=1e–9;MaxIter=100;
                   >> [x0q,f0q]=opt_quad(f323,[a,b],TolX,TolFun,MaxIter)
                   x0q =
                            2.2361
                   f0q =
                           –1.0000
                   >> % x0q= minimum point and f0q = its function value in above
                   >> [x0q,f0q]=fminbnd(f323,a,b) % MATLAB built-in function
                   x0q =
                           2.2361
                   f0q =
                          –1.0000

                   function [xo,fo]=opt_quad(f,x0,TolX,TolFun,MaxIter)
                   %search for the minimum of f(x) by quadratic approximation method
                   if length(x0)>2, x012=x0(1:3);
                   else
                   if length(x0)==2, a=x0(1); b=x0(2);
   301   302   303   304   305   306   307   308   309   310   311