Page 18 -
P. 18
1-4 MEMS: Design and Fabrication
to the explosive literature on MEMS and should provide the definitive word for the fundamentals and
applications of microfabrication and microdevices. Glancing at each table of contents, the reader may
rightly sense an overemphasis on the physics of microdevices. This is consistent with the strong convic-
tion of the Editor-in-Chief that the MEMS technology is moving too fast relative to our understanding
of the unconventional physics involved. This technology can certainly benefit from a solid foundation of
the underlying fundamentals. If the physics is better understood, less expensive, and more efficient,
microdevices can be designed, built, and operated for a variety of existing and yet-to-be-dreamed appli-
cations. Consistent with this philosophy, chapters on control theory, distributed control, and soft com-
puting are included as the backbone of the futuristic idea of using colossal numbers of microsensors and
microactuators in reactive control strategies aimed at taming turbulent flows to achieve substantial
energy savings and performance improvements of vehicles and other manmade devices.
I shall leave you now for the many wonders of the small world you are about to encounter when navi-
gating through the various chapters of these volumes. May your voyage to Lilliput be as exhilarating,
enchanting, and enlightening as Lemuel Gulliver’s travels into “Several Remote Nations of the World.”
Hekinah degul! Jonathan Swift may not have been a good biologist and his scaling laws were not as good as
those of William Trimmer (see Chapter 2 of MEMS: Introduction and Fundamentals),but Swift most certainly
was a magnificent storyteller. Hnuy illa nyha majah Yahoo!
References
Amato, I. (1998) “Formenting a Revolution, in Miniature,” Science 282, no. 5388, 16 October,
pp. 402–405.
Angell, J.B., Terry, S.C., and Barth, P.W. (1983) “Silicon Micromechanical Devices,” Faraday Transactions
I 68, pp. 744–748.
Ashley, S. (1996) “Getting a Microgrip in the Operating Room,” Mech. Eng. 118, September,
pp. 91–93.
Bryzek, J., Peterson, K., and McCulley, W. (1994) “Micromachines on the March,”IEEE Spectrum 31, May,
pp. 20–31.
Busch-Vishniac, I.J. (1998) “Trends in Electromechanical Transduction,” Phys. Today 51, July, pp. 28–34.
Chalmers, P. (2001) “Relay Races,” Mech. Eng. 123, January, pp. 66–68.
DeGaspari, J. (2003) “Mixing It Up,” Mech. Eng. 125, August, pp. 34–38.
Ehrenman, G. (2004) “Shrinking the Lab Down to Size,” Mech. Eng. 126, May, pp. 26–29.
Epstein, A.H. (2000) “The Inevitability of Small,” Aerospace Am. 38, March, pp. 30–37.
Epstein,A.H., and Senturia, S.D. (1997) “Macro Power from Micro Machinery,”Science 276, 23 May, p. 1211.
Epstein, A.H., Senturia, S.D., Al-Midani, O., Anathasuresh, G., Ayon, A., Breuer, K., Chen, K.-S., Ehrich,
F.F., Esteve, E., Frechette, L., Gauba, G., Ghodssi, R., Groshenry, C., Jacobson, S.A., Kerrebrock, J.L.,
Lang, J.H., Lin, C.-C., London, A., Lopata, J., Mehra, A., Mur Miranda, J.O., Nagle, S., Orr, D.J.,
Piekos, E., Schmidt, M.A., Shirley, G., Spearing, S.M., Tan, C.S., Tzeng, Y.-S., and Waitz, I.A. (1997)
“Micro-Heat Engines, Gas Turbines, and Rocket Engines — The MIT Microengine Project,” AIAA
Paper No. 97-1773, AIAA, Reston, Virginia.
Feder, T. (2004) “Scholars Probe Nanotechnology’s Promise and Its Potential Problems,” Phys. Today 57,
June, pp. 30–33.
Feynman, R.P. (1961) “There’s Plenty of Room at the Bottom,” in Miniaturization, H.D. Gilbert,
ed., pp. 282–296, Reinhold Publishing, New York.
Gabriel, K.J. (1995) “Engineering Microscopic Machines,” Sci. Am. 260, September, pp. 150–153.
Gabriel, K.J., Jarvis, J., and Trimmer, W., eds. (1988) Small Machines, Large Opportunities: A Report on the
Emerging Field of Microdynamics, National Science Foundation, published by AT&T Bell
Laboratories, Murray Hill, New Jersey.
Gabriel, K.J., Tabata, O., Shimaoka, K., Sugiyama, S., and Fujita, H. (1992) “Surface-Normal
Electrostatic/Pneumatic Actuator,” in Proc. IEEE Micro Electro Mechanical Systems ’92, pp. 128–131,
4–7 February, Travemünde, Germany.
© 2006 by Taylor & Francis Group, LLC