Page 74 -
P. 74
To describe the second effect in different terms, we can turn to the fictional character
Sherlock Holmes, who says that your brain is like an attic; it only has a finite amount of
space. He says that “for every addition of knowledge, you forget something that you knew
before. It is of the highest importance, therefore, not to have useless facts elbowing out the
12
useful ones.”
Fortunately, if you have the computational capacity needed to build a big enough neural
network—i.e., a big enough attic—then this is not a serious concern. You have enough
capacity to learn from both internet and from mobile app images, without the two types of
data competing for capacity. Your algorithm’s “brain” is big enough that you don’t have to
worry about running out of attic space.
But if you do not have a big enough neural network (or another highly flexible learning
algorithm), then you should pay more attention to your training data matching your dev/test
set distribution.
If you think you have data that has no benefit,you should just leave out that data for
computational reasons. For example, suppose your dev/test sets contain mainly casual
pictures of people, places, landmarks, animals. Suppose you also have a large collection of
scanned historical documents:
These documents don’t contain anything resembling a cat. They also look completely unlike
your dev/test distribution. There is no point including this data as negative examples,
because the benefit from the first effect above is negligible—there is almost nothing your
neural network can learn from this data that it can apply to your dev/test set distribution.
Including them would waste computation resources and representation capacity of the
neural network.
12 A Study in Scarlet by Arthur Conan Doyle
Page 74 Machine Learning Yearning-Draft Andrew Ng