Page 651 - Mathematical Techniques of Fractional Order Systems
P. 651

622  Mathematical Techniques of Fractional Order Systems


            Ouannas A, Grassi G, Azar AT, Radwan AG, Volos C, Pham VT, et al., 2017j. Dead-Beat
               Synchronization Control in Discrete-Time Chaotic Systems. The 6th International
               Conference on Modern Circuits and Systems Technologies (MOCAST), 4-6 May 2017,
               Thessaloniki Greece.
            Petra ´ˇ s, I. 2006. A Note on the Fractional-Order Cellular Neural Networks. In: Proceedings of the
               IEEE International world congress on computational intelligence, international joint confer-
               ence on neural networks, pp. 16 21.
            Petra ´ˇ s, I., 2008. A note on the fractional-order Chua’s system. ELSEVIER, Chaos Solitons
               Fractals 38 (I1).
            Pham, V.T., Vaidyanathan, S., Volos, C.K., Azar, A.T., Hoang, T.M., Yem, V.V., et al., 2017.
               Studies inComputational Intelligence, Vol. 688. Springer-Verlag, Germany, pp. 449 470.
            Podlubny, I., 1999. Fractional differential equations. Academic Press, San Diego.
            Rabah, K., Ladaci, S., Lashab, M., 2017. A Novel Fractional Sliding Mode Control
               Configuration for Synchronizing Disturbed Fractional order Chaotic Systems. Pramana,
               Springer 89 (3), 1 13. Available from: https://doi.org/10.1007/s12043-017-1443-7.
            Sastry, S., Bodson, M., 1989. Adaptive Control: Stability, Convergence and Robustness.
               Prentice-Hall, New York.
            Singh, S., Azar, A.T., Ouannas, A., Zhu, Q., Zhang, W., Na, J. 2017. Sliding ModeControl Technique
               for Multi-switching Synchronization of Chaotic Systems. 9th International Conference on
               Modelling, Identification and Control (ICMIC 2017), July 10-12, 2017, Kunming, China.
            Soliman, N.S., Said, L.A., Azar, A.T., Madian, A.H., Radwan, A.G., Ouannas, A., 2017.
               Fractional Controllable Multi-Scroll V-Shape Attractor with Parameters Effect. The 6th
               International Conference on Modern Circuits and Systems Technologies (MOCAST), 4-6
               May 2017, Thessaloniki Greece.
            Takagi, T., Sugeno, M., 1985. Fuzzy Identification of Systems and Its Applications to Modeling
               and Control. IEEE Transactions on Systems, Man, and Cybernetics 15 (1), 116 132.
            Tanaka, K., Wang, H.O., 2001. Fuzzy Control Systems Design and Analysis: A Linear Matrix
               Inequality Approach John Wiley & Sons, Inc. ISBNs: 0-471-32324-1 (Hardback); 0-471-
               22459-6 (Electronic).
            Tolba, M.F., AbdelAty, A.M., Soliman, N.S., Said, L.A., Madian, A.H., Azar, A.T., et al., 2017.
               FPGA implementation of two fractional order chaotic systems. International Journal of
               Electronics and Communications 28, 162 172. 2017.
            Utkin, V.I., 1977. Variable structure systems with sliding mode. IEEE Trans Autom Control 22
               (2), 212 222.
            Vaidyanathan, S., Azar, A.T., 2015a. Anti-Synchronization of Identical Chaotic Systems using
               Sliding Mode Control and an Application to Vaidyanathan-Madhavan Chaotic Systems.
               In: Azar, A.T., Zhu, Q. (Eds.), Advances and Applications in Sliding Mode Control systems,
               Studies in Computational Intelligence book Series, Vol. 576. Springer-Verlag GmbH Berlin/
               Heidelberg, pp. 527 547. Available from: http://dx.doi.org/10.1007/978-3-319-11173-5_19.
            Vaidyanathan, S., Azar, A.T., 2015b. Hybrid Synchronization of Identical Chaotic Systems using
               Sliding Mode Control and an Application to Vaidyanathan Chaotic Systems. In: Azar, A.T.,
               Zhu, Q. (Eds.), Advances and Applications in Sliding Mode Control systems, Studies in
               Computational Intelligence book Series, Vol. 576. Springer-Verlag GmbH Berlin/
               Heidelberg, pp. 549 569. Available from: http://dx.doi.org/10.1007/978-3-319-11173-5_20.
            Vaidyanathan, S., Azar, A.T., 2015c. Analysis, Control and Synchronization of a Nine-Term 3-D
               Novel Chaotic System. In: Azar, A.T., Vaidyanathan, S. (Eds.), Chaos Modeling and Control
               Systems Design, Studies in Computational Intelligence, Vol. 581. Springer-Verlag GmbH
               Berlin/Heidelberg, pp. 3 17. Available from: http://dx.doi.org/10.1007/978-3-319-13132-0_1.
   646   647   648   649   650   651   652   653   654   655   656