Page 651 - Mathematical Techniques of Fractional Order Systems
P. 651
622 Mathematical Techniques of Fractional Order Systems
Ouannas A, Grassi G, Azar AT, Radwan AG, Volos C, Pham VT, et al., 2017j. Dead-Beat
Synchronization Control in Discrete-Time Chaotic Systems. The 6th International
Conference on Modern Circuits and Systems Technologies (MOCAST), 4-6 May 2017,
Thessaloniki Greece.
Petra ´ˇ s, I. 2006. A Note on the Fractional-Order Cellular Neural Networks. In: Proceedings of the
IEEE International world congress on computational intelligence, international joint confer-
ence on neural networks, pp. 16 21.
Petra ´ˇ s, I., 2008. A note on the fractional-order Chua’s system. ELSEVIER, Chaos Solitons
Fractals 38 (I1).
Pham, V.T., Vaidyanathan, S., Volos, C.K., Azar, A.T., Hoang, T.M., Yem, V.V., et al., 2017.
Studies inComputational Intelligence, Vol. 688. Springer-Verlag, Germany, pp. 449 470.
Podlubny, I., 1999. Fractional differential equations. Academic Press, San Diego.
Rabah, K., Ladaci, S., Lashab, M., 2017. A Novel Fractional Sliding Mode Control
Configuration for Synchronizing Disturbed Fractional order Chaotic Systems. Pramana,
Springer 89 (3), 1 13. Available from: https://doi.org/10.1007/s12043-017-1443-7.
Sastry, S., Bodson, M., 1989. Adaptive Control: Stability, Convergence and Robustness.
Prentice-Hall, New York.
Singh, S., Azar, A.T., Ouannas, A., Zhu, Q., Zhang, W., Na, J. 2017. Sliding ModeControl Technique
for Multi-switching Synchronization of Chaotic Systems. 9th International Conference on
Modelling, Identification and Control (ICMIC 2017), July 10-12, 2017, Kunming, China.
Soliman, N.S., Said, L.A., Azar, A.T., Madian, A.H., Radwan, A.G., Ouannas, A., 2017.
Fractional Controllable Multi-Scroll V-Shape Attractor with Parameters Effect. The 6th
International Conference on Modern Circuits and Systems Technologies (MOCAST), 4-6
May 2017, Thessaloniki Greece.
Takagi, T., Sugeno, M., 1985. Fuzzy Identification of Systems and Its Applications to Modeling
and Control. IEEE Transactions on Systems, Man, and Cybernetics 15 (1), 116 132.
Tanaka, K., Wang, H.O., 2001. Fuzzy Control Systems Design and Analysis: A Linear Matrix
Inequality Approach John Wiley & Sons, Inc. ISBNs: 0-471-32324-1 (Hardback); 0-471-
22459-6 (Electronic).
Tolba, M.F., AbdelAty, A.M., Soliman, N.S., Said, L.A., Madian, A.H., Azar, A.T., et al., 2017.
FPGA implementation of two fractional order chaotic systems. International Journal of
Electronics and Communications 28, 162 172. 2017.
Utkin, V.I., 1977. Variable structure systems with sliding mode. IEEE Trans Autom Control 22
(2), 212 222.
Vaidyanathan, S., Azar, A.T., 2015a. Anti-Synchronization of Identical Chaotic Systems using
Sliding Mode Control and an Application to Vaidyanathan-Madhavan Chaotic Systems.
In: Azar, A.T., Zhu, Q. (Eds.), Advances and Applications in Sliding Mode Control systems,
Studies in Computational Intelligence book Series, Vol. 576. Springer-Verlag GmbH Berlin/
Heidelberg, pp. 527 547. Available from: http://dx.doi.org/10.1007/978-3-319-11173-5_19.
Vaidyanathan, S., Azar, A.T., 2015b. Hybrid Synchronization of Identical Chaotic Systems using
Sliding Mode Control and an Application to Vaidyanathan Chaotic Systems. In: Azar, A.T.,
Zhu, Q. (Eds.), Advances and Applications in Sliding Mode Control systems, Studies in
Computational Intelligence book Series, Vol. 576. Springer-Verlag GmbH Berlin/
Heidelberg, pp. 549 569. Available from: http://dx.doi.org/10.1007/978-3-319-11173-5_20.
Vaidyanathan, S., Azar, A.T., 2015c. Analysis, Control and Synchronization of a Nine-Term 3-D
Novel Chaotic System. In: Azar, A.T., Vaidyanathan, S. (Eds.), Chaos Modeling and Control
Systems Design, Studies in Computational Intelligence, Vol. 581. Springer-Verlag GmbH
Berlin/Heidelberg, pp. 3 17. Available from: http://dx.doi.org/10.1007/978-3-319-13132-0_1.

