Page 11 - Matrices theory and applications
P. 11

x
                                      The Spectrum and the Diagonal of Hermitian Matrices .
                                                                                            51
                                 3.4
                                 3.5
                                      Exercises . ... .. .. ... .. .. ... .. .. ... ..
                                                                                            55
                              4 Norms
                                      A Brief Review .. .. ... .. .. ... .. .. ... ..
                                 4.1
                                                                                            61
                                      Householder’s Theorem ... .. .. ... .. .. ... ..
                                 4.2
                                                                                            66
                                      An Interpolation Inequality
                                 4.3 Contents                   . .. .. . .. .. .. . .. .   61
                                                                                            67
                                 4.4  A Lemma about Banach Algebras . . . . . . . . . . . . .  70
                                 4.5  The Gershgorin Domain .. .. .. ... .. .. ... ..       71
                                 4.6  Exercises . ... .. .. ... .. .. ... .. .. ... ..      73
                              5 Nonnegative Matrices                                        80
                                 5.1  Nonnegative Vectors and Matrices . ... .. .. ... ..   80
                                 5.2  The Perron–Frobenius Theorem: Weak Form . . . . . . .  81
                                 5.3  The Perron–Frobenius Theorem: Strong Form . . . . . .  82
                                 5.4  Cyclic Matrices .. .. ... .. .. ... .. .. ... ..      85
                                 5.5  Stochastic Matrices .. ... .. .. ... .. .. ... ..     87
                                 5.6  Exercises . ... .. .. ... .. .. ... .. .. ... ..      91
                              6 Matrices with Entries in a Principal Ideal Domain;
                                 Jordan Reduction                                           97
                                 6.1  Rings, Principal Ideal Domains .. ... .. .. ... ..    97
                                 6.2  Invariant Factors of a Matrix . . . . . . . . . . . . . . . .  101
                                 6.3  Similarity Invariants and Jordan Reduction  . . . . . . .  104
                                 6.4  Exercises . ... .. .. ... .. .. ... .. .. ... ..     111
                              7 Exponential of a Matrix, Polar Decomposition, and
                                 Classical Groups                                          114
                                 7.1  The Polar Decomposition .. .. .. ... .. .. ... ..    114
                                 7.2  Exponential of a Matrix . . . . . . . . . . . . . . . . . .  116
                                 7.3  Structure of Classical Groups . . . . . . . . . . . . . . .  120
                                 7.4  The Groups U(p, q) . .. . .. .. .. . .. .. .. . .. .  122
                                 7.5  The Orthogonal Groups O(p, q) .. ... .. .. ... ..    123
                                 7.6  The Symplectic Group Sp   .. .. ... .. .. ... ..     127
                                                             n
                                 7.7  Singular Value Decomposition . . . . . . . . . . . . . . .  128
                                 7.8  Exercises . ... .. .. ... .. .. ... .. .. ... ..     130
                              8 Matrix Factorizations                                      136
                                 8.1  The LU Factorization .. . .. .. .. . .. .. .. . .. .  137
                                 8.2  Choleski Factorization ... .. .. ... .. .. ... ..    142
                                 8.3  The QR Factorization . ... .. .. ... .. .. ... ..    143
                                 8.4  The Moore–Penrose Generalized Inverse . . . . . . . . .  145
                                 8.5  Exercises . ... .. .. ... .. .. ... .. .. ... ..     147

                              9 Iterative Methods for Linear Problems                      149
   6   7   8   9   10   11   12   13   14   15   16