Page 86 - Matrices theory and applications
P. 86

4.3. An Interpolation Inequality
                              Let B be the strip in the complex plane defined by  z ∈ [0, 1]. Given z ∈ B,

                              define (conjugate) exponents r(z)and r (z)by
                                                   z
                                                       1 − z
                                              1
                                                                      z
                                                                1
                                                     +
                                                 =
                                                                    =
                                                            ,
                                            r(z)
                                                                      p
                                                               r (z)
                                                         q
                                                                            q
                                                   p



                              Set

                                                                        r +  1 − z   .      69
                                                  −1+r/r(z)
                                   X j (z):=   |x j |    x j = x j exp     − 1 log |x j | ,
                                                                       r(z)


                                                         z
                                    Y j (z):=  |y j | −1+r /r (¯) y j .
                              We then have


                                                      r/r(
z)                  r /r (
z)
                                       X(z)  r(
z) =  x     ,   Y (z)  r   (
z) =  y     .
                                                      r                        r
                              Next, define a holomorphic map in the strip B by f(z):= (AX(z),Y (z)).
                              It is bounded, because the numbers X j (z)and Y k (z) are. For example,
                                                                 r/r(
z)
                                                     |X j (z)| = |x j |
                                            r/p       r/q
                              lies between |x j |  and |x j |  .
                                Let us set M(θ)= sup{|f(z)|;  z = θ}. Hadamard’s three lines lemma
                              (see [29], Chapter 12, exercise 8) expresses that
                                                        θ  → log M(θ)
                              is convex on (0, 1). However, r(0) = q, r(1) = p, r (0) = q , r (1) = p ,





                              r(θ)= r, r (θ)= r , X(θ)= x,and Y (θ)= y. Hence

                                                                        θ
                                           |(Ax, y)| = |f(θ)|≤ M(θ) ≤ M(1) M(0) 1−θ .
                              Now we have
                                         M(1) = sup{|f(z)|;  z =1}
                                               ≤ sup{ AX(z)  r(1)  Y (z)  r(1)  ;  z =1}
                                               =sup{ AX(z)  p Y (z)  p  ;  z =1}
                                               ≤ A  p sup{ X(z)  p Y (z)  p  ;  z =1}

                                                           r/p  r /p
                                               =  A  p  x     y     .
                                                           r    r

                                                     r/q   r /q
                              Likewise, M(0) ≤ A  q  x  r  y     . Hence
                                                           r



                                                   θ    1−θ   r(θ/p+(1−θ)/q)  r (θ/p +(1−θ)/q )
                                   |(Ax, y)|  ≤  A   A     x              y
                                                   p    q     r             r
                                                     θ    1−θ
                                                =  A   A      x  r  y  r  .
                                                     p    q
                              Finally,
                                                       |(Ax, y)|     θ   1−θ
                                            Ax  r =sup         ≤ A   A   q   x  r ,
                                                                     p
                                                    y =0   y  r
                              which proves the theorem.
   81   82   83   84   85   86   87   88   89   90   91