Page 265 - Matrix Analysis & Applied Linear Algebra
P. 265

260              Chapter 4                                              Vector Spaces

                                        The invariant subspaces for a linear operator T are important because they
                                    produce simplified coordinate matrix representations of T. To understand how
                                    this occurs, suppose X is an invariant subspace under T, and let

                                                             B X = {x 1 , x 2 ,..., x r }
                                    be a basis for X that is part of a basis

                                                       B = {x 1 , x 2 ,..., x r , y 1 , y 2 ,..., y q }
                                    for the entire space V. To compute [T] B , recall from the definition of coordinate
                                    matrices that

                                         [T] B =  [T(x 1 )] B   ···   [T(x r )] B   [T(y 1 )] B   ···   [T(y q )] B .  (4.9.1)





                                    Because each T(x j ) is contained in X, only the first r vectors from B are
                                    needed to represent each T(x j ), so, for j =1, 2,...,r,
                                                                                        
                                                                                      α 1j
                                                                                       .
                                                                                     . 
                                                          r                          . 
                                                                                        
                                                                                     α rj
                                                 T(x j )=   α ij x i  and  [T(x j )] B =    .    (4.9.2)
                                                                                         
                                                                                     0 
                                                         i=1                          .  
                                                                                       .
                                                                                     . 
                                                                                       0
                                    The space
                                                           Y = span {y 1 , y 2 ,..., y q }         (4.9.3)
                                    may not be an invariant subspace for T, so all the basis vectors in B may be
                                    needed to represent the T(y j ) ’s. Consequently, for j =1, 2,...,q,
                                                                                          
                                                                                        β 1j
                                                                                       . 
                                                                                         .
                                                                                       . 
                                                   r         q                            

                                                                                          
                                          T(y j )=   β ij x i +  γ ij y i  and  [T(y j )] B =    β rj   .  (4.9.4)
                                                                                          
                                                  i=1       i=1                         γ 1j 
                                                                                       . 
                                                                                         .
                                                                                       . 
                                                                                        γ qj
                                    Using (4.9.2) and (4.9.4) in (4.9.1) produces the block-triangular matrix
                                                                                      
                                                            α 11  ··· α 1r  β 11  ··· β 1q
                                                           .    .     .   .   .
                                                           . .   . .  . .  . .  . .  . 
                                                                                     .
                                                                                     . 
                                                                                      
                                                            α r1  ···  α rr  β r1  ···  
                                                    [T] B =                       β rq   .       (4.9.5)
                                                            0   ···  0   γ 11  ···    
                                                                                   γ 1q 
                                                           .    .     .   .   .
                                                           . .   . .  . .  . .  . .  . 
                                                                                     .
                                                                                     . 
                                                             0   ···  0   γ q1  ···  γ qq
   260   261   262   263   264   265   266   267   268   269   270