Page 247 - Mechanics of Asphalt Microstructure and Micromechanics
P. 247

Models for  Asphalt Concrete   239



        References
              Allen, D.H. and Searcy, C.R. (2001). A micromechanically-based model for predicting dynamic
                 damage evolution in ductile polymers. Mechanics of Materials, Vol.33, pp.177–184.

              Al-Qadi, I.L., Hassan, M.M. and Elseifi, M.A. (2005). Field and theoretical evaluation of
                 thermal fatigue cracking in fl exible pavements. Transportation Research Record, No.1919,
                 pp.87–95.
              Barenblatt, G. (1962). The mathematical theory of equilibrium cracks in brittle fracture. Advances
                 in Applied Mechanics, Vol.7, pp.55–129.
              Benedetto, H.D. and Olard, F. (2009). DBN law for thermo-visco-elasto-plastic behavior of as-
                 phalt concrete. Modeling of Asphalt Concrete, Kim, Y.R (Editor), McGraw-Hill, ASCE.
              Bodin, D., Pijaudier-Cabot, G., de La Roche, C., Piau, J.M. and Chabot, A. (2004). Continuum
                 damage approach to asphalt concrete fatigue modeling. Journal of Engineering Mechanics,
                 Vol.130, No.6, pp.700–708.
              Bonnetti, K.S., Nam, K. and Bahia, H.U. (2002). Measuring and defining fatigue behavior of

                 asphalt binders. Transportation Research Record, No.1810, pp.33–43.
              Castro, M. and Sanchez, J. A. (2008). Estimation of asphalt concrete fatigue curves – A dam-
                 age theory approach. Construction and Building Materials, Vol.22, pp.1232–1238.
              Chehab, G.R., Kim, Y.R., Schapery, R.A., Witczak, M.W. and Bonaquist, R. (2002). Time-tem-
                 perature superposition principle for asphalt concrete mixtures with growing damage in
                 tension state. Journal of the Association of Asphalt Paving Technologists, Vol.71, pp.559–593.
              Chehab, G.R., and Kim, Y.R. (2005). Viscoelastoplastic continuum damage model application
                 to thermal cracking of asphalt concrete. Journal of Materials in Civil Engineering, Vol.17,
                 No.4, pp.384–392.
              Chaboche, J. L. (1986). Time-independent constitutive theories for cyclic plasticity. International
                 Journal of Plasticity, Vol.2, No. 249, pp. 149–188.
              Cheng, D., Little, D. N., Lytton, R. L., and Holste, J. C. (2002) Surface energy measurement of
                 asphalt and its application to predicting fatigue and healing in asphalt mixtures. Transporta-
                 tion Research Record. No.1810, pp.44–53.
              Collop, A. C., Scarpas, A.T., Kasbergen, C. and Bondt, A.D. (2003). Development and fi nite ele-
                 ment implementation of a stress dependent elasto-visco-plastic constitutive model with
                 damage for asphalt. Transportation Research Record. No. 1832, pp.96–104.
              Daniel, J.S., and Kim, Y.R. (2002). Development of a simplified fatigue test and analysis pro-

                 cedure using a viscoelastic continuum damage model. Journal of the Association of Asphalt
                 Paving Technologists, Vol.71, pp.619–650.
              Desai, C.S. (2001). Mechanics of Materials and Interfaces: the Disturbed State Concept. CRC
                 Press, Boca Raton.

              Desai, C.S. (2007). Unified DSC constitutive model for pavement materials with numerical
                 implementation. International Journal of Geomechanics, Vol.7, No.2, pp.83–101.

              Desai, C. (2009). Unified disturbed state consitutive modeling of asphalt concrete. Modeling of
                 Asphalt Concrete, Kim, Y.R (Editor), McGraw-Hill, ASCE.
              Desai, C.S., Somasundaram, S. and Frantziskonis, G. (1986). A hierarchical approach for constitu-
                 tive modeling of geologic materials. International Journal of Numerical Analytical Methods in
                 Geomechanics, Vol. 10, pp. 225–257.
              Dessouky, S., Masad; E., Little, D. and Zbib, H. (2006). Finite-element analysis of hot mix asphalt
                 microstructure using effective local material properties and strain gradient elasticity. Journal
                 of Engineering Mechanics, Vol.132, No.2, pp.158–171.
   242   243   244   245   246   247   248   249   250   251   252