Page 247 - Mechanics of Asphalt Microstructure and Micromechanics
P. 247
Models for Asphalt Concrete 239
References
Allen, D.H. and Searcy, C.R. (2001). A micromechanically-based model for predicting dynamic
damage evolution in ductile polymers. Mechanics of Materials, Vol.33, pp.177–184.
Al-Qadi, I.L., Hassan, M.M. and Elseifi, M.A. (2005). Field and theoretical evaluation of
thermal fatigue cracking in fl exible pavements. Transportation Research Record, No.1919,
pp.87–95.
Barenblatt, G. (1962). The mathematical theory of equilibrium cracks in brittle fracture. Advances
in Applied Mechanics, Vol.7, pp.55–129.
Benedetto, H.D. and Olard, F. (2009). DBN law for thermo-visco-elasto-plastic behavior of as-
phalt concrete. Modeling of Asphalt Concrete, Kim, Y.R (Editor), McGraw-Hill, ASCE.
Bodin, D., Pijaudier-Cabot, G., de La Roche, C., Piau, J.M. and Chabot, A. (2004). Continuum
damage approach to asphalt concrete fatigue modeling. Journal of Engineering Mechanics,
Vol.130, No.6, pp.700–708.
Bonnetti, K.S., Nam, K. and Bahia, H.U. (2002). Measuring and defining fatigue behavior of
asphalt binders. Transportation Research Record, No.1810, pp.33–43.
Castro, M. and Sanchez, J. A. (2008). Estimation of asphalt concrete fatigue curves – A dam-
age theory approach. Construction and Building Materials, Vol.22, pp.1232–1238.
Chehab, G.R., Kim, Y.R., Schapery, R.A., Witczak, M.W. and Bonaquist, R. (2002). Time-tem-
perature superposition principle for asphalt concrete mixtures with growing damage in
tension state. Journal of the Association of Asphalt Paving Technologists, Vol.71, pp.559–593.
Chehab, G.R., and Kim, Y.R. (2005). Viscoelastoplastic continuum damage model application
to thermal cracking of asphalt concrete. Journal of Materials in Civil Engineering, Vol.17,
No.4, pp.384–392.
Chaboche, J. L. (1986). Time-independent constitutive theories for cyclic plasticity. International
Journal of Plasticity, Vol.2, No. 249, pp. 149–188.
Cheng, D., Little, D. N., Lytton, R. L., and Holste, J. C. (2002) Surface energy measurement of
asphalt and its application to predicting fatigue and healing in asphalt mixtures. Transporta-
tion Research Record. No.1810, pp.44–53.
Collop, A. C., Scarpas, A.T., Kasbergen, C. and Bondt, A.D. (2003). Development and fi nite ele-
ment implementation of a stress dependent elasto-visco-plastic constitutive model with
damage for asphalt. Transportation Research Record. No. 1832, pp.96–104.
Daniel, J.S., and Kim, Y.R. (2002). Development of a simplified fatigue test and analysis pro-
cedure using a viscoelastic continuum damage model. Journal of the Association of Asphalt
Paving Technologists, Vol.71, pp.619–650.
Desai, C.S. (2001). Mechanics of Materials and Interfaces: the Disturbed State Concept. CRC
Press, Boca Raton.
Desai, C.S. (2007). Unified DSC constitutive model for pavement materials with numerical
implementation. International Journal of Geomechanics, Vol.7, No.2, pp.83–101.
Desai, C. (2009). Unified disturbed state consitutive modeling of asphalt concrete. Modeling of
Asphalt Concrete, Kim, Y.R (Editor), McGraw-Hill, ASCE.
Desai, C.S., Somasundaram, S. and Frantziskonis, G. (1986). A hierarchical approach for constitu-
tive modeling of geologic materials. International Journal of Numerical Analytical Methods in
Geomechanics, Vol. 10, pp. 225–257.
Dessouky, S., Masad; E., Little, D. and Zbib, H. (2006). Finite-element analysis of hot mix asphalt
microstructure using effective local material properties and strain gradient elasticity. Journal
of Engineering Mechanics, Vol.132, No.2, pp.158–171.