Page 168 - Modern physical chemistry
P. 168

160                      Relationships among Reactants

             So fonnula (7.64) yields

             Kc = Kp(RTr~n = (1.130 x 10 40  bar- 1I2  1(0_0831451 bar K- i  mol- i  )(298-15 K)J'2 = 5.63 x 104OM- 1I2 _


             ExampleZl0

                How does the fraction of dissociation a vary with pressure P for (a) reaction (7.69),
             (b) reaction (7.73)?
                (a) Begin with 1 mole PC1 5 and 0 mole PCl 3 and Clz• Then
                                  no =a =1,       b=c=O,         x=a,

             and equation (7.72) reduces to





                (b) Begin with 1 mole N 20 4  and 0 mole N0 2 • Then
                                   no =a=l,        b=O,        x=a,
             and equation (7.75) reduces to
                                                4a 2 p    4a 2 p
                                        K =(  I-a  l+a    l-a
                                         p
                                                 X  )=- 2 '

             ExampleZll

                For N Z0 4  (g) the log K f  is -17.132,  while for N0 2  (g) it is -8.981.  Calculate Kp  for
             reaction (7.73).
                Proceed as in example 7.8 to get

                      10gKp =2(logKr)N02  -(logKr)Nz 4  =2(-8.981)-(-17.132)=-0.830
                                                   0
             whence
                                             Kp = 0.148 bar.


             ExampleZ12

                What is the density of an equilibrium mixture of N Z0 4 and NOz  at 25 C and 1.000 bar?
                                                                          0
                With the results in examples 7.10 (b) and 7.11, we have
                                           2
                                        4a ( 1.000 bar)
                                        _-'--__ -L = 0.148 bar
                                            l-a 2
             whence
                                               a =0.189.
             With equation (7.77), we find that
                    W        PM               (1.000 bar )(92.011 g mOl-I)
                 p=_=           I     =                                      =312g1-1
                                                       I
                    V   RT[I+{V-l)a]  (0.0831451 bar K- mol-I X298.15 KX1.189)·       .
   163   164   165   166   167   168   169   170   171   172   173