Page 103 - Neural Network Modeling and Identification of Dynamical Systems
P. 103

REFERENCES                                    91
                           [94] Ljung L. System identification: Theory for the user. 2nd  [103] Tischler M, Remple RK. Aircraft and rotorcraft system
                              ed. Upper Saddle River, NJ: Prentice Hall; 1999.  identification: Engineering methods with flight-test ex-
                           [95] Sage AP, Melsa JL. System identification. New York  amples. Reston, VA: AIAA; 2006.
                              and London: Academic Press; 1971.        [104] Morelli EA, In-flight system identification. AIAA–
                           [96] Tsypkin YZ. Information theory of identification.  98–4261, 10.
                              Moscow: Nauka; 1995 (in Russian).        [105] Morelli EA, Klein V. Real-time parameter estima-
                           [97] Isermann R, Münchhoh M. Identification of dynamic  tion in the frequency domain. J Guid Control Dyn
                              systems: An introduction with applications. Berlin:  2000;23(5):812–8.
                              Springer; 2011.                          [106] Morelli EA, Multiple input design for real-time param-
                           [98] Juang JN, Phan MQ. Identification and control of me-  eter estimation in the frequency domain, in: 13th IFAC
                              chanical systems. Cambridge, MA: Cambridge Univer-  Conf. on System Identification, Aug. 27–29, 2003, Rot-
                              sity Press; 1994.                            terdam, The Netherlands. Paper REG-360, 7.
                           [99] Pintelon R, Schoukens J. System identification: A fre-  [107] Smith MS, Moes TR, Morelli EA, Flight investigation
                              quency domain approach. New York, NY: IEEE Press;  of prescribed simultaneous independent surface exci-
                              2001.                                        tations for real-time parameter identification. AIAA–
                          [100] Berestov LM, Poplavsky BK, Miroshnichenko LY.  2003–5702, 23.
                              Frequency domain aircraft identification. Moscow:  [108] Schroeder MR. Synthesis of low-peak-factor signals
                              Mashinostroyeniye; 1985 (in Russian).        and binary sequences with low autocorrelation. IEEE
                          [101] Vasilchenko  KK,  Kochetkov  YA,  Leonov  VA,  Trans Inf Theory 1970;16(1):85–9.
                              Poplavsky BK. Structural identification of math-  [109] Brusov VS, Tiumentsev YuV. Neural network model-
                              ematical  model  of  aircraft  motion.  Moscow:  ing of aircraft motion. Moscow: MAI; 2016 (in Rus-
                              Mashinostroyeniye; 1993 (in Russian).        sian).
                          [102] Klein V, Morelli EA. Aircraft system identification:
                              Theory and practice. Reston, VA: AIAA; 2006.
   98   99   100   101   102   103   104   105   106   107   108