Page 204 - Neural Network Modeling and Identification of Dynamical Systems
P. 204

5.5 OPTIMAL DESIGN OF EXPERIMENTS FOR SEMIEMPIRICAL ANN-BASED MODELS  195
                          Algorithm 2 Active CMA-ES.
                          Require: E : R n θ  → R                                  objective function to be minimized
                                    +
                          Require: θ ∈ R n θ                                        initial guess for parameter vector
                          Require: σ ∈ R >0                                                       initial step length
                          Require: λ   2                                                            population size
                                  ) *
                                   λ
                           1: μ ←                                       number of individuals subject to recombination
                                   4
                                   4
                           2: c c ←                                                   learning rate for search path p c
                                  n θ +4
                           3: c σ ← c c                                               learning rate for search path p σ
                                      1
                           4: d σ ← 1 +                                                damping factor for step length
                                      c σ
                                       2
                           5: c cov ←  √                                 learning rate for C based on the search history
                                    (n θ + 2) 2
                                     4μ−2
                           6: c μ ←                                  learning rate for C based on the current population
                                        2
                                  (n θ +12) +4μ
                           7: C ← I                                                 initial guess for covariance matrix
                           8: p σ = 0                                                    initial value for search path
                           9: p c = 0

                                   √ 	  n θ +1
                                ←    2   2                                                            M [ N(0,I) ]
                          10: χ n θ
                                       	  n θ
                                         2
                          11: repeat
                          12:   C = BD(BD)  T                             eigendecomposition of the covariance matrix
                          13:   for i = 1,...,λ do
                          14:      ζ ∼ N(0,I)
                                    i
                                                                                                              2
                                         +
                                                                                                          +
                          15:      ν i ← θ + σBDζ i                                                ν i ∼ N(θ ,σ C)
                          16:      E i ← E(ν i )
                          17:   end for
                          18:   ζ 1,...,λ  ← argsort(E 1,...,λ )     sort ζ according to objective function values E(ν i )
                                                                         i
                                       μ
                                     1  (
                          19:   ¯ ζ ←    ζ i
                                     μ
                                      i=1
                                 −
                          20:   θ ← θ  +
                                       −
                                 +
                          21:   θ ← θ + σBD ¯ ζ
                                                 √
                          22:   p σ ← (1 − c σ )p σ +  μc σ (2 − c σ )B ¯ ζ
                                                √
                          23:   p c ← (1 − c c )p c +  μc c (2 − c c )BD ¯ ζ
                                                                &                        '
                                                                    μ           (
                                                                                 λ
                                                                   (
                                                       T
                                                                         T
                          24:   C ← (1 − c cov )C + c cov p c p + c μ BD  1 μ  ζ ζ −  μ 1  ζ ζ  T  (BD) T
                                                       c
                                                                       i i
                                                                                      i i
                                                                   i=1        i=λ−μ+1
                                          p σ  −χ n θ
                          25:   σ ← σ exp
                                           d σ χ n θ
                                    +
                                         −
                          26: until  θ − θ   >ε
                          the general case, but experimentally confirmed  Another important aspect of the effective
                          for many real-world problems. In the follow-  training set is the choice of weights for contribu-
                          ing we present a pseudocode for the basic ver-  tions of individual training examples to the error
                          sion of the Active CMA-ES algorithm (see Algo-  function (so-called error weights). Note that the
                          rithm 2).                                    situation when the values of inputs for ¯n train-
   199   200   201   202   203   204   205   206   207   208   209