Page 334 - New Trends in Eco efficient and Recycled Concrete
P. 334
Comparative studies of the life cycle analysis between conventional and recycled aggregate concrete 291
Radimpex Software, 2012. Tower 7. Belgrade. Retrieved from: ,http://www.radimpex.rs/
about.php?lang 5 srandid 5 1..
Rangel, C.S., Amario, M., Pepe, M., Yao, Y., Mobasher, B., Toledo Filho, R.D., 2017.
Tension stiffening approach for interface characterization in recycled aggregate con-
crete. Cem. Concr. Compos. 82, 176 189. Available from: https://doi.org/10.1016/j.
cemconcomp.2017.06.009.
Sarhat, S.R., Sherwood, E.G., 2013. Residual mechanical response of recycled aggregate con-
crete after exposure to elevated temperatures. J. Mater. Civ. Eng. 25 (11), 1721 1730.
Sato, R., Maruyama, I., Sogabe, T., Sogo, M., 2007. Flexural behavior of reinforced recycled
aggregate concrete beams. J. Adv. Concr. Technol. 5 (1), 43 61. Available from:
https://doi.org/10.4334/JKCI.2009.21.4.431.
Silva, R.V., De Brito, J., Dhir, R.K., 2015. Tensile strength behaviour of recycled aggregate
concrete. Constr. Build. Mater. 83, 108 118. Available from: https://doi.org/10.1016/j.
conbuildmat.2015.03.034.
Silva, R.V., De Brito, J., Evangelista, L., Dhir, R.K., 2016. Design of reinforced recycled
aggregate concrete elements in conformity with Eurocode 2. Constr. Build. Mater. 105,
144 156. Available from: https://doi.org/10.1016/j.conbuildmat.2015.12.080.
Silva, R.V., Neves, R., De Brito, J., Dhir, R.K., 2015. Carbonation behaviour of recycled
aggregate concrete. Cem. Concr. Compos. 62, 22 32. Available from: https://doi.org/
10.1016/j.cemconcomp.2015.04.017.
Spielmann, M., Bauer, C., Dones, R., and Tuchschmid, M., 2007. Transport Services.
Ecoinvent Report No. 14. Swiss Centre for Life Cycle Inventories, Du ¨bendorf.
Tillman, A.M., Ekvall, T., Baumann, H., Rydberg, T., 1994. Choice of system boundaries in
life cycle assessment. J. Cleaner Prod. 2 (1), 21 29. Available from: https://doi.org/
10.1016/0959-6526(94)90021-3.
Toˇ si´ c, N., Marinkovi´ c, S., Ignjatovi´ c, I., 2016. A database on flexural and shear strength of
reinforced recycled aggregate concrete beams and comparison to Eurocode 2 predic-
tions. Constr. Build. Mater. 127, 932 944. Available from: https://doi.org/10.1016/j.
conbuildmat.2016.10.058.
Turk, J., Cotic, Z., Mladenovic, A., Sajna, A., 2015. Environmental evaluation of green con-
cretes versus conventional concrete by means of LCA. Waste Manage. 45 (305),
194 205. Available from: https://doi.org/10.1016/j.wasman.2015.06.035.
Vieira, J.P.B., Correia, J.R., De Brito, J., 2011. Post-fire residual mechanical properties of
concrete made with recycled concrete coarse aggregates. Cem. Concr. Res. 41 (5),
533 541. Available from: https://doi.org/10.1016/j.cemconres.2011.02.002.
Vogtl¨ ander, J.G., Brezet, H.C., Hendriks, C.F., 2001. Allocation in recycling systems: an
integrated model for the analyses of environmental impact and market value. Int. J. Life
Cycle Assess. 6 (6), 344 355. Available from: https://doi.org/10.1007/BF02978865.
Weil, M., Jeske, U., Schebek, L., 2006. Closed-loop recycling of construction and demolition
waste in Germany in view of stricter environmental threshold values. Waste Manage.
Res. 24 (3), 197 206. Available from: https://doi.org/10.1177/0734242X06063686.
Xiao, J., Falkner, H., 2007. Bond behaviour between recycled aggregate concrete and steel
rebars. Constr. Build. Mater. 21 (2), 395 401. Available from: https://doi.org/10.1016/j.
conbuildmat.2005.08.008.
Xiao, J., Fan, Y., Tawana, M.M., 2013. Residual compressive and flexural strength of a
recycled aggregate concrete following elevated temperatures. Struct. Concr. 14 (2),
168 175. Available from: https://doi.org/10.1002/suco.201200037.