Page 499 - New Trends in Eco efficient and Recycled Concrete
P. 499
Microstructural studies on recycled aggregate concrete 449
Raki, L., Chen, M., Mailvaganam, N.P., 2003. Acceleration of the rate of the strength devel-
opment for concrete mixes containing 30% replacement of Portland cement by fly ash.
In: Sixth CANMET/ACI International Conference on Recent Advances in Concrete
Technology, Bucharest, pp. 1 15.
Richardson, I.G., 2004. Tobermorite/jennite- and tobermorite/calcium hydroxide-based mod-
els for the structure of C S H: applicability to hardened pastes of tricalcium silicate,
β-dicalcium silicate, Portland cement, and blends of Portland cement with blast-furnace
slag, metakaolin. Cem. Concr. Res. 34 (9), 1733 1777.
Richardson, I.G., 2008. The calcium silicate hydrates. Cem. Concr. Res. 38 (2), 137 158.
Rossen, J.E., Scrivener, K.L., 2017. Optimization of SEM-EDS to determine the C A S H
composition in matured cement paste samples. Mater. Char. 123, 294 306.
Rossen, J.E., Lothenbach, B., Scrivener, K.L., 2015. Composition of C S H in pastes with
increasing levels of silica fume addition. Cem. Concr. Res. 75, 14 22.
Roychand, R., De Silva, S., Setunge, S., Law, D., 2017. A quantitative study on the effect of
nano SiO 2 , nano Al 2 O 3 and nano CaCO 3 on the physicochemical properties of very high
volume fly ash cement composite. Eur. J. Environ. Civ. Eng. 1 16.
Ru ¨bner, K., Prinz, C., Adolphs, J., Hempel, S., Schnelld, A., 2015. Microstructural character-
isation of lightweight granules made from masonry rubble. Microporous Mesoporous
Mater. 209, 113 121.
Ryu, H.-S., Kim, D.-M., Shin, S.-H., Lim, S.-M., Park, W.-J., 2018. Evaluation on the surface
modification of recycled fine aggregates in aqueous H 2 SiF 6 solution. Int. J. Concr.
Struct. Mater. 12 (1).
Sahoo, K.K., Arakha, M., Sarkar, P., Davis, R., Jha, S., 2016. Enhancement of properties of
recycled coarse aggregate concrete using bacteria. Int. J. Smart Nano Mater. 7 (1),
22 38.
Sanchez, F., Sobolev, K., 2010. Nanotechnology in concrete a review. Constr. Build.
Mater. 24 (11), 2060 2071.
Schlegel, M., Sarfraz, A., Mu ¨ller, U., Panne, U., Emmerling, F., 2012. First seconds in a
building’s life in situ Synchrotron X-ray diffraction study of cement hydration on the
millisecond timescale. Angew. Chem. Int. Ed. 51 (20), 4993 4996.
Scho ¨nlein, M., Plank, J., 2018. A TEM study on the very early crystallization of C S Hin
the presence of polycarboxylate superplasticizers: transformation from initial C S H
globules to nanofoils. Cem. Concr. Res. 106, 33 39.
Scrivener, K.L., Patel, H.H., Pratt, P.L., Parrott, L.J., 1986. Analysis of phases in cement
paste using backscattered electron images, methanol adsorption and thermogravimetric
analysis. In: Sffuble, L.J., Brown, P.W. (Eds.), Microstructural Development During
Hydration of Cement, Vol. 85. MRS Symposium, pp. 67 76.
Scrivener, K.L., 2004. Backscattered electron imaging of cementitious microstructures:
understanding and quantification. Cem. Concr. Compos. 26 (8), 935 945.
Scrivener, K.L., Pratt, P.L., 1983. Characterisation of Portland cement hydration by electron
optical techniques. MRS Proc. 31 351.
Scrivener, K.L., Pratt, P.L., 1984. Backscattered electron images of polished cement sections
in the scanning electron microscope. Int. Conf. Cem. Microsc. 145 155. local?.
Scrivener, K.L., Gartner, E.M., 1987. Microstructural gradients in cement paste around
aggregate particles. MRS Proc. 114, 77.
Scrivener, K.L., Nonat, A., 2011. Hydration of cementitious materials, present and future.
Cem. Concr. Res. 41 (7), 651 665.
Scrivener, K., Snellings, R., Lothenbach, B., 2017. A Practical Guide to Microstructural
Analysis of Cementitious Materials. CRC Press.

