Page 172 - Numerical Methods for Chemical Engineering
P. 172

Polynomial interpolation                                            161



                       1















                     2
                     1

                                    1    1      2     2


                  Figure 4.2 Plot of the sine function f(x) at its Hermite interpolating polynomial p(x), fitting the
                  function and first derivative values at each end point.

                  Thus, we have from (4.44)
                                                2                                  2

                                          x − b                             x − a
                   L 01 (x) = l 01 (x) = (x − a)      L 11 (x) = l 01 (x) = (x − b)  (4.47)
                                          a − b                             b − a
                                                (1)
                  and from (4.45), L j0 (x) = l j0 (x) − l (x j )L j0 (x), yielding
                                                j0
                                               2            
              2
                                         x − b        2              x − b

                                L 00 (x) =       −           (x − a)
                                         a − b      (a − b)          a − b
                                                                                     (4.48)
                                               2            
              2

                                         x − a        2              x − a
                                L 01 (x) =       −           (x − b)
                                         b − a      (b − a)          b − a
                  Using hermite ex.m, we approximate the sine function on [0, π]by
                  hermite ex(‘sin’,0,pi);
                  to generate Figure 4.2.

                  Other types of interpolation

                  Here, we have considered interpolation using only polynomials to match function values at
                  a set of support points; however, many other types of interpolation exist, e.g. with trigono-
                  metric functions instead of polynomials. For brevity, we do not consider these methods here,
                  but refer the interested reader to Press et al. (1992) and Quateroni et al. (2000). The interpo-
                  lation methods introduced above are sufficient to meet our immediate needs of computing
                  the values of definite integrals. In MATLAB, various options for polynomial interpolation
                  are available in interp1.
   167   168   169   170   171   172   173   174   175   176   177