Page 156 - Optofluidics Fundamentals, Devices, and Applications
P. 156
Optofluidic Colloidal Photonic Crystals 131
3. Y. Monovooukas and A. P. Gast, “The experimental phase diagram of charged
colloidal suspensions,” Journal of Colloid and Interface Science, 128, (1989),
533–548.
4. A. Yethiraj and A. van Blaaderen, “A colloidal model system with an interaction
tunable from hard sphere to soft and dipolar,” Nature, 421, (2003), 513–517.
5. P. Bartlett and A. I. Campbell, “Three-dimensional binary superlattices of oppo-
sitely charged colloids,” Physical Review Letters, 95, (2005), 128302.
6. M. E. Leunissen, C. G. Christova, A.-P. Hynninen, C. P. Royall, A. I. Campbell,
A. Imhof, M. Dijkstra, R. van Roij, and A.van Blaaderen, “Ionic colloidal crys-
tals of oppositely charged particles,” Nature, 437, (2005), 235–240.
7. J. D. Joannopoulos, R. D. Meade, and Joshua N. Winn, “Photonic crystals: mold-
ing the flow of light,” Princeton University Press, (1995), Princeton.
8. http://ab-initio.mit.edu/wiki/index.php/MIT_Photonic_Bands.
9. Y. A. Vlasov, X.-Z. Bo, J. C. Sturm, and D. J. Norris, “On-chip natural assembly
of silicon photonic bandgap crystals,” Nature, 414, (2001), 289–293.
10. Y.-S. Cho, G.-R. Yi, J. H. Moon, D.-C. Kim, B.-J. Lee, and S.-M. Yang, “Connected
open structures from close-packed colloidal crystals by hyperthermal neutral
beam etching,” Langmuir, 21, (2005), 10770–10775.
11. G. von Freymann, S. John, V. Kitaev, and G. A. Ozin, “Enhanced coupling to
slow photon modes in three-dimensional graded colloidal photonic crystals,”
Advanced Materials, 17, (2005), 1273–1276.
12. W. Stober, A.Fink, and E. Bohn, “Controlled growth of monodisperse silica
spheres in the micron size range,” Journal of Colloid and Interface Science, 26,
(1968), 62–69.
13. A. van Blaaderen and A. Vrij, “Synthesis and characterization of colloidal
dispersions of fluorescent, monodisperse silica spheres,” Langmuir, 8, (1992),
2921–2931.
14. P. H. Wang and C.-Y. Pan, “Preparation of styrene/acrylic acid copolymer
microspheres: polymerization mechanism and carboxyl group distribution,”
Colloid & Polymer Science, 280, (2002), 152–159.
15. E. Kim, Y. Xia, and G. M. Whitesides, “Two- and three-dimensional crystal-
lization of polymeric microspheres by micromolding in capillaries,” Advanced
Materials, 8, (1996), 245–247.
16. P. Yang, T. Deng, D. Zhao, P. Reng, D. Pine, B. F. Chmelka, G. M. Whitesides,
and G. D. Stucky, “Hierarchically ordered oxides,” Science, 282, (1998), 2244–
2246.
17. P. Yang, A. H. Rizvi, B. Messer, B. F. Chmelka, G. M. Whitesides, and G. D.
Stucky, “Patterning porous oxides within microchannel networks,” Advanced
Materials, 13, (2001), 427–431.
18. J. H. Moon, S. Kim, G.-R. Yi, Y.-H. Lee, and S.-M. Yang, “Fabrication of ordered
macroporous cylinders by colloidal templating in microcapillaries,” Langmuir,
20, (2004), 2033–2035.
19. U. Kamp, V. Kitaev, G. von Freymann, G. A. Ozin, and S. A. Mabury, “Colloidal
Crystal Capillary Columns-Towards Optical Chromatography,” Advanced
Materials, 17, (2005), 438–443.
20. S.-K. Lee, G-R. Yi, and S.-M. Yang, “High-speed fabrication of patterned col-
loidal photonic structures in centrifugal microfluidic chips,” Lab on a Chip, 6,
(2006), 1171–1177.
21. J.-Y. Shiu, C.-W. Kuo, and P. Chen, “Actively controlled self-assembly of col-
loidal crystals in microfluidic networks by electrocapillary forces,” Journal of
the American Chemical Society, 126, (2004), 8096–8097.
22. J.-Y. Shiu and P. Chen, “Active patterning using an addressable microfluidic
network,” Advanced Materials, 17, (2005), 1866–1869.
23. K. N. Plunkett, A. Mohraz, R. T. Haasch, J. A. Lewis, and J. S. Moore, “Light-
regulated electrostatic interactions in colloidal suspensions,” Journal of the
American Chemical Society, 127, (2005), 14574–14575.
24. M. N. Shkunov, Z. V. Vardeny, M. C. DeLong, R. C. Polson, A. A. Zakhidov, and
R. H. Baughman, “Tunable, gap-state lasing in switchable directions for opal
photonic crystals,” Advanced Functional Materials, 12, (2002), 21–26.