Page 224 - PRINCIPLES OF QUANTUM MECHANICS as Applied to Chemistry and Chemical Physics
P. 224

8.1 Permutations of identical particles           215
                                              ^
                                              P 31 Ø(1, 2, 3) ˆ ë 3 Ø(1, 2, 3)
                        where ë 1 ˆÐ 1, ë 2 ˆÐ 1, ë 3 ˆÐ 1 are the respective eigenvalues. From equa-
                        tions (8.21) and (8.25), we obtain
                         ^               ^ ^                ^ ^                ^ ^
                         P 231 Ø(1, 2, 3) ˆ P 23 P 12 Ø(1, 2, 3) ˆ P 31 P 23 Ø(1, 2, 3) ˆ P 12 P 31 Ø(1, 2, 3)
                                       ˆ Ø(2, 3, 1)
                        or
                                    ë 2 ë 1 Ø(1, 2, 3) ˆ ë 3 ë 2 Ø(1, 2, 3) ˆ ë 1 ë 3 Ø(1, 2, 3)
                        from which it follows that

                                                     ë 1 ˆ ë 2 ˆ ë 3
                        Thus, the simultaneous eigenfunctions Ø(1, 2, 3) are either symmetric
                        (ë 1 ˆ ë 2 ˆ ë 3 ˆ 1) or antisymmetric (ë 1 ˆ ë 2 ˆ ë 3 ˆÿ1).
                          The symmetric Ø S or antisymmetric Ø A eigenfunctions may be constructed
                        from Ø(1, 2, 3) by the relations
                        Ø S ˆ 6 ÿ1=2 [Ø(1, 2, 3) ‡ Ø(1, 3, 2) ‡ Ø(2, 3, 1) ‡ Ø(2, 1, 3) ‡ Ø(3, 1, 2)
                                    ‡ Ø(3, 2, 1)]                                        (8:26a)
                        Ø A ˆ 6 ÿ1=2 [Ø(1, 2, 3) ÿ Ø(1, 3, 2) ‡ Ø(2, 3, 1) ÿ Ø(2, 1, 3) ‡ Ø(3, 1, 2)

                                    ÿ Ø(3, 2, 1)]                                        (8:26b)
                        where the factor 6 ÿ1=2  normalizes Ø S and Ø A if Ø(1, 2, 3) is normalized. As
                        in the two-particle case, the functions Ø S and Ø A are orthogonal. Moreover, a
                        wave function which is initially symmetric (antisymmetric) remains symmetric


                        (antisymmetric) over time. The probability densities Ø Ø S and Ø Ø A are
                                                                            S          A
                        independent of how the three particles are labeled. The two functions Ø S and
                                                             ^
                        Ø A are, therefore, the eigenfunctions of H(1, 2, 3) that we are seeking.
                                                                                           ^
                          Equations (8.26) may be expressed in another, equivalent way. If we let P be
                                                            ^
                        any one of the permutation operators P áâã in equation (8.17), then we may
                        write
                                                         X
                                                                ^
                                             Ø S,A ˆ 6 ÿ1=2  ä P PØ(1, 2, 3)              (8:27)
                                                          P
                                                                                 ^
                        where the summation is taken over the six different operators P áâã , and ä P is
                        either ‡1or ÿ1. For the symmetric wave function Ø S , ä P is always ‡1, but for
                        the antisymmetric wave function Ø A , ä P is ‡1(ÿ1) if the permutation
                                ^
                        operator P involves the exchange of an even (odd) number of pairs of particles.
                                                      ^
                                              ^
                                         ^
                        Thus, ä P is ÿ1 for P 132 , P 213 and P 321 .
                        N-particle systems
                        The treatment of a three-particle system may be generalized to an N-particle
   219   220   221   222   223   224   225   226   227   228   229