Page 280 - PVT Property Correlations
P. 280

246  PVT Property Correlations


            Shateri, M., Ghorbani, S., Hemmati-Sarapardeh, A., Mohammadi, A.H., 2015. Application of
               Wilcoxon generalized radial basis function network for prediction of natural gas compress-
               ibility factor. J. Taiwan Inst. Chem. Eng. 50, 131 141.

            FURTHER READING
            Esfahani, S., Baselizadeh, S., Hemmati-Sarapardeh, A., 2015. On determination of natural gas
               density: least square support vector machine modeling approach. J. Nat. Gas Sci. Eng. 22,
               348 358.
            Gholami, R., et al., 2014. Applications of artificial intelligence methods in prediction of perme-
               ability in hydrocarbon reservoirs. J. Pet. Sci. Eng. 122, 643 656.
            Hemmati-Sarapardeh, A., Aminshahidy, B., Pajouhandeh, A., Yousefi, S.H., Hosseini-
               Kaldozakh, S.A., 2016. A soft computing approach for the determination of crude oil viscos-
               ity: light and intermediate crude oil systems. J. Taiwan Inst. Chem. Eng. 59, 1 10.
            Mohagheghian, E., Zafarian-Rigaki, H., Motamedi-Ghahfarrokhi, Y., Hemmati-Sarapardeh, A.,
               2015. Using an artificial neural network to predict carbon dioxide compressibility factor at
               high pressure and temperature. Korean J. Chem. Eng. 32 (10), 2087 2096.
            Osman, E.-S.A. and Al-Marhoun, M.A., 2005. Artificial neural networks models for predicting
               PVT properties of oil field brines. In: SPE-93765-MS Presented at the SPE Middle East Oil
               and Gas Show and Conference, 12 15 March, Bahrain. https://doi.org/10.2118/93765-MS.



            PROBLEMS
            10.1 Given the following ANN structure, compute the network output using
                 unity for the weightsas initial guess. For three iterations, calculate the new
                 weight values associated with the ANN error at each iteration to match the
                 given output. Assume the input nodes values to be: 0.1, 0.2, and 0.3, the
                 bias node value is 0.5 and the required output node value is 1.0.

                            I1
                                                H1


                                                H2
                            I2                            O1

                                                H3


                                                H4
                            I3



                                  B1
   275   276   277   278   279   280   281   282   283   284   285