Page 255 - Phase Space Optics Fundamentals and Applications
P. 255
236 Chapter Seven
8. Masud Mansuripur, The Physical Principles of Magneto-Optical Recording, Cam-
bridge University Press, New York, 1995, Chapter 3, Section 3.1, Stationary
phase approximation.
9. James Harvey, “Fourier treatment of near-field scalar diffraction theory,” Am.
J. Phys. 47(11): 974–980 (1979). James E. Harvey, Cynthia L. Vernold, Andrey
Krywonos, and Patrick L. Thompson, “Diffracted radiance: A fundamental
quantity in nonparaxial scalar diffraction theory,” Appl. Opt. 38(31): 6469–6481
(1999). James E. Harvey, Cynthia L. Vernold, Andrey Krywonos, and Patrick
L. Thompson, “Diffracted radiance: A fundamental quantity in nonparaxial
scalar diffraction theory: Errata,” Appl. Opt. 39(34): 6374–6375 (2000). James
E. Harvey, Andrey Krywonos, and Cynthia L. Vernold, “Modified Beckmann-
Kirchhoff scattering model for rough surfaces with large incident and scattering
angles,” Opt. Eng. 46(7): 078002-[1-9] (2007).
10. A, Walther, “Radiometry and coherence,” J. Opt. Soc. Am. 58(9): 1256–1259
(1968).
11. E. W. Marchand, and E. Wolf, “Radiometry with sources of any state of coher-
ence,” J. Opt. Soc. Am. 64(9): 1219–1226 (1974).
12. Harrison H. Barrett and Kyle J. Myers, Foundations of Image Science, Wiley In-
terscience, New York, 2004, Section 5.2, p. 227.
13. C. L. Mehta and E. Wolf, “Coherence properties of blackbody radiation, I. Cor-
relation tensors of the classical field,” Phys. Rev. A 134(5): 1143–1149 (1964).
14. J. M. Palmer and B. Grant, The Art of Radiometry (based on J. M. Palmer, Lecture
Notes, University of Arizona) to be published.
15. C.L.MehtaE.Wolf,andA.P.Balachandran,“Sometheoremsontheunimodular
complex degree of coherence,” J. Math. Phys. 7(1): 133–138 (1966).