Page 269 - Physical Principles of Sedimentary Basin Analysis
P. 269

7.15 Subsidence of the Vøring margin, NE Atlantic   251
                          Table 7.2. An example of computation of β-factors.

                          i  s i      i   w i   f i  c i   β max,i  β i

                          1  1      2200  0     2.2  35028  1.00   1.18
                          2  1800   2200  300   2.2  29690  1.18   1.07
                          3  2300   2250  550   2.1  27670  1.27   1.77
                          4  10000  2550  950   1.5  15660  2.24   1.96
                          5  15000  2560  1050  1.5  8000  4.38    -


            each of the four rift-phases. The modeling is for the present-day position 151 km along the
            profile in Figure 7.32a, which is for the quite deep Træna basin. This is also a place where
            the present day crust has a local minimum, and therefore undergoes most stretching. The
            black circles show the match of the modeled tectonic subsidence against the tectonic sub-
            sidence for the burial history modeling. The modeled tectonic subsidence is decomposed
            into isothermal subsidence and thermal uplift, and we see that the thermal uplift is only
            noticeable for the third and Late Jurassic rift phase. Figure 7.33b shows how the β-factor
            increases during rifting, when each rift phase has a constant strain-rate. These β-factors
            are similar to the β-factors in figure 7.32c, which were computed using a constant mantle
            density, assuming that thermal uplift has died out at the beginning of each rift phase.
            Note 7.15 Example: The estimation of the crustal thickness c i at time t i using expres-
            sion (7.185) is an instructive example that shows how the crust is thinned through the rift
            phases. The phases of extension start at time t i and there are N = 4 phases of rifting.
            The time t 5 (for i = N + 1) is the present time. It is once again assumed that the time
            between periods of extension is sufficiently long for thermal transients to have died out.
            The computation is based on the thicknesses of the sedimentary basin s i , the average sed-
            iment density   i and the water depth w i at each time t i . These input data are the first
            three columns of Table 7.2. The present day crustal thickness is in this case c 5 = 8km,
            and the densities of water, crust and mantle are   w = 1000 kg m −3 ,   c = 2800 kg m −3 ,
              m = 3300 kg m −3 , respectively. The data in Table 7.2 are taken from the Naagrind syn-
            cline at position 98.5 km, which is close to its deepest position. The first step is to make
            the factors
                                              (  m −   i )
                                          f i =                               (7.191)
                                              (  m −   c )
            from the densities, and the next step is to estimate the initial crustal thickness

                                   c 0 = c 5 + f w (w 5 − w 0 ) + f 5 s 5     (7.192)

            from the present-day data (last line of the table). Once we have c 0 we can derive the
            thickness of the crust at the beginning of each rift phase

                                      c i = c 0 − f w w i − f i s i           (7.193)
   264   265   266   267   268   269   270   271   272   273   274