Page 109 - Plant-Based Remediation Processes
P. 109
98 M. Mleczek et al.
Klimkowicz-Pawlas A (2009) Impact of polycyclic aromatic hydrocarbons on site soil function.
Institute of Soil Science and Plant Cultivation–State Research Institute, Puławy
La Rocca N, Andreoli C, Giacometti GM, Rascio N, Moro I (2009) Responses of the Antarctic
microalga Koliella antarctica (Trebouxiophyceae, Chlorophyta) to cadmium contamination.
Photosynthetica 47:471–479
Lee J, Bae H, Jeong J, Lee JY, Yang YY, Hwang I, Martinoia E, Lee Y (2003a) Functional
expression of a bacterial heavy metal transporter in Arabidopsis enhances resistance to and
decreases uptake of heavy metals. Plant Physiol 133:589–596
Lee S, Moon JS, Ko TS, Petros D, Goldsbrough PB, Korban SS (2003b) Over-expression of
Arabidopsis phytochelatin synthase paradoxically leads to hypersensitivity to cadmium stress.
Plant Physiol 131:656–663
Ma LQ, Komar KM, Tu C, Zhang W, Cai Y (2001) A fern that hyperaccumulates arsenic. Nature
409:579
Madejo ´n P, Murillo JM, Maran ˜o ´n T, Cabrera F, Soriano MA (2003) Trace element and nutrient
accumulation in sunflower plants two years after the Aznaco ´llar mine spill. Sci Total Environ
307:239–257
Madejo ´n P, Murillo JM, Maran ˜o ´n T, Lepp NW (2007) Factors affecting accumulation of thallium
and other trace elements in two wild Brassicaceae spontaneously growing on soils
contaminated by tailings dam waste. Chemosphere 67:20–28
Marques APGC, Moreira H, Rangel AOSS, Castro PML (2009) Arsenic, lead and nickel accumu-
lation in Rubus ulmifolius growing in contaminated soil in Portugal. J Hazard Mater
165:174–179
McGrath SP, Zhao FJ (2003) Phytoextraction of metals and metalloids from contaminated soils.
Curr Opin Biotechnol 14:277–282
McGrath SP, Lombi E, Gray CW, Caille N, Dunham SJ, Zhao FJ (2006) Field evaluation of Cd and
Zn phytoextraction potential by the hyperaccumulators Thlaspi caerulescens and Arabidopsis
halleri. Environ Pollut 141:115–125
Memon AR, Schro ¨der P (2009) Implications of metal accumulation mechanisms to
phytoremediation. Environ Sci Pollut Res 16:162–175
Mench M, Lepp N, Bert V, Schwitzgue ´bel JP, Gawronski SW, Schro ¨der P, Vangronsveld J (2010)
Successes and limitations of phytotechnologies at field scale: outcomes, assessment and
outlook from COST Action 859. J Soils Sediments 10:1039–1070
Mengel K, Kirkby EA (2001) Principles of plant nutrition. Kluwer, Dordrecht
Mocek A, Drzymała S (2010) Soil origin, analysis and classification. Poznan ´ University of Life
Sciences, Poznan ´
Mocek A, Mocek-Pło ´ciniak A (2011) Xenobiotics in Polish soil environment. Nauka-Przyroda-
Technologie 4:84 (In Polish)
Mocek A, Owczarzak W (2011) Parent material and soil physical properties. In: Glin ´ski J,
Horabik J, Lipiec J (eds) Encyclopedia of agrophysics. Springer, Dordrecht
Moradi AB, Swoboda S, Robinson B, Prohaska T, Kaestner A, Oswald SE, Wenzel WW,
Schulin R (2010a) Mapping of nickel in root cross-sections of the hyperaccumulator plant
Berkheya coddii using laser ablation ICP-MS. Environ Exp Bot 69:24–31
Moradi AB, Oswald SE, Nordmeyer-Massner JA, Pruessmann KP, Robinson BH, Schulin R
(2010b) Analysis of nickel concentration profiles around the roots of the hyperaccumulator
plant Berkheya coddii using MRI and numerical simulations. Plant Soil 328:291–302
Mys ´ko ´w W (1984) Agricultural importance of humus and methods of regulation of its quantities in
soil. Institute of Soil Science and Plant Cultivation–State Research Institute, Puławy (In Polish)
Padmavathiamma PK, Li LY (2007) Phytoremediation technology: hyper-accumulation of metals
in plants. Water Air Soil Pollut 184:105–126
Pagliano C, Raviolo M, Vecchia FD, Gabbrielli R, Gonnelli C, Rascio N, Barbato R, La Rocca N
(2006) Evidence for PSII-donor-side damage and photo inhibition induced by cadmium
treatment on rice (Oryza sativa L.). J Photochem Photobiol B Biol 84:70–78