Page 167 - Plant-Based Remediation Processes
P. 167

158                                                   T. Vamerali et al.

            Robinson B, Schulin R, Nowack B, Roulier S, Menon M, Clothier B, Green S, Mills T (2006)
              Phytoremediation for the management of metal flux in contaminated sites. For Snow Landsc
              Res 80:221–234
            Rosselli W, Keller C, Boschi K (2003) Phytoextraction capacity of trees growing on a metal-
              contaminated soil. Plant Soil 256:265–272
            Saison C, Schwartz C, Morel JL (2004) Hyperaccumulation of metals by Thlaspi caerulescens as
              affected by root development and Cd-Zn/Ca-Mg interactions. Int J Phytoremediation 6:49–61
            Salt DE, Blaylock M, Nanda-Kumar PBA, Dushenkov V, Ensly BD, Chet I, Raskin I (1995)
              Phytoremediation: a novel strategy for the removal of toxic elements from the environment
              using plants. Biotechnology 13:468–475
            Sheldon AR, Menzies NW (2005) The effect of copper toxicity on the growth and root morphology
              of Rhodes grass (Chloris gayana Knuth.) in resin buffered solution culture. Plant Soil 278:
              341–349
            Shen H, Christie P, Li XL (2006) Uptake of zinc, cadmium and phosphorus by arbuscular
              mycorrhizal maize (Zea mays L.) from a low available phosphorus calcareous soil spiked
              with zinc and cadmium. Environ Geochem Health 28:111–119
            Tandy S, Bossart K, Mueller R, Ritschel J, Hauser L, Schulin R, Nowack B (2004) Extraction of
              heavy metals from soils using biodegradable chelating agents. Environ Sci Technol 38:
              937–944
            Ubi W, Osodeke VE (2007) Toxicity of aluminium to pineapple (Ananas comosus) grown on acid
              sands of Cross River State, Nigeria. Global J Environ Sci 6:15–20
            Vamerali T, Bandiera M, Coletto L, Zanetti F, Dickinson NM, Mosca G (2009) Phytoremediation
              trials on metal- and arsenic-contaminated pyrite wastes (Torviscosa, Italy). Environ Pollut 157:
              887–894
            Vamerali T, Bandiera M, Mosca G (2010) Field crops for phytoremediation of metal-contaminated
              land. A review. Environ Chem Lett 8:1–17
            Vamerali T, Bandiera M, Hartley W, Mosca G (2011a) Assisted phytoremediation of mixed metal
              (loid)-polluted pyrite waste: effects of foliar and substrate IBA application on fodder radish.
              Chemosphere 84:213–219
            Vamerali T, Bandiera M, Mosca G (2011b) In situ phytoremediation of arsenic- and metal-
              polluted pyrite waste with field crops: effects of soil management. Chemosphere 83:
              1241–1248
            Vidal M, Lo ´pez-Sa ´nchez JF, Sastre J, Jime ´nez G, Dagnac T, Rubio R, Rauret G (1999) Prediction
              of the impact of the Aznalco ´llar toxic spill on the trace element contamination of agricultural
              soils. Sci Tot Environ 242:131–148
            Wang FY, Lin XG, Yin R (2007) Effect of Arbuscular mycorrhizal fungal inoculation on heavy
              metal accumulation of maize grown in a naturally contaminated soil. Int J Phytoremediation
              9:345–353
            Wiegleb G, Felinks B (2001) Primary succession in post-mining landscapes of lower Lusatia –
              chance or necessity. Ecol Eng 17:199–217
            Yang XE, Feng Y, He Z, Stoffella PJ (2005) Molecular mechanisms of heavy metal hyperaccu-
              mulation and phytoremediation. J Trace Elem Med Biol 18:339–353
            Yoon JK, Cao XD, Zhou QX, Ma LQ (2006) Accumulation of Pb, Cu, and Zn in native plants
              growing on a contaminated Florida site. Sci Total Environ 368:456–464
   162   163   164   165   166   167   168   169   170   171   172