Page 181 - Plant-Based Remediation Processes
P. 181
172 X.-Z. Yu and J.-D. Gu
Doran JW (1982) Microorganisms and the biological cycling of selenium. Adv Microb Ecol
6:1–32
Duckart EC, Waldron LJ, Donner HE (1992) Selenium uptake and volatilization from plants
growing in soil. Soil Sci 153:94–99
EI Mehdawi AF, Pilon-Smits EAH (2011) Ecological aspects of plant selenium hyperaccu-
mulation. Plant Biol 14:1–10
EI-Shafey EI (2007) Removal of Se (IV) from aqueous solution using sulphuric acid-treated
peanut shell. J Environ Manage 84:620–627
Ellis DR, Salt DE (2003) Plants, selenium and human health. Curr Opin Plant Biol 6:273–279
Elrashidi MA, Adriano DC, Workman SM, Lindsay WL (1987) Chemical equilibria of selenium in
soils: a theoretical development. Soil Sci 144:141–152
Freeman GL, Banuelos GS (2011) Selection of salt and boron tolerant selenium hyperaccumulator
Stanleya pinnata genotypes and characterization of Se phytoremediation from agricultural
drainage sediments. Environ Sci Technol 45:9703–9710
Fridovich I (1978) The biology of oxygen radical. Science 39:522–526
Halliwell B, Gutteridge MC (1999) Free radical biology and medicine. Oxford University Press,
London
Hamilton SJ (2003) Review of residue-based selenium toxicity thresholds for freshwater fish.
Ecotoxicol Environ Saf 56:201–210
Hamilton SJ (2004) Review of selenium toxicity in the aquatic food chain. Sci Total Environ
326:1–31
Hansen D, Duda PJ, Zayed AM, Terry N (1998) Selenium removal by constructed wetlands: role
of biological volatilization. Environ Sci Technol 32:591–597
Hartikainen H, Xue T, Piironen V (2000) Selenium as an anti-oxidant and pro-oxidant in ryegrass.
Plant Soil 225:193–200
Hatzfeld Y, Cathala N, Grignon C, Davidian JC (1998) Effect of ATP sulfurylase overexpression
in bright yellow 2 tobacco cells. Plant Physiol 116:1307–1313
Hawkesford MJ, Davidian JC, Grignon C (1993) Sulphate/proton co-transport in plasma-
membrane vesicles isolated from roots of Brassica napus L.: increased transport in membranes
isolated from sulphur-starved plants. Planta 190:297–304
Haygarth PM (1994) Global importance and globally cycling of selenium. In: Frankenberger WT
Jr, Benson S (eds) Selenium in the environment. Marcel Dekker, New York
Hopper JL, Parker DR (1999) Plant availability of selenite and selenate as influenced by the
competing ions phosphate and sulfate. Plant soil 210:199–207
Karlson U, Frankenberger WT Jr, Spencer WF (1994) Physicochemical properties of dimethyl
selenide and dimethyl diselenide. J Chem Eng Data 39:608–610
Kashiwa M, Nishimoto S, Takahashi K, Ike M, Fujita M (2000) Factors affecting soluble selenium
removal by a selenate reducing bacterium Bacillus sp. SF-1. J Biosci Bioeng 89:528–533
Khattak RA, Page AL, Parker DR, Baktar D (1991) Accumulation and interactions of arsenic,
selenium, molybdenum and phosphorus in alfalfa. J Environ Qual 20:165–168
Kitahara J, Seko Y, Imura N (1993) Possible involvement of active oxygen species in selenite
toxicity in isolated rat hepatocytes. Arch Toxicol 67:497–501
Lass B, Ullrich-Eberius CI (1984) Evidence for proton/sulfate co-transport and its kinetics in
Lemna gibba G1. Planta 161:53–60
LeDuc DL, Tarun AS, Montes-Bayon M, Meija J, Malit MF, Wu CP, Abdel-Samie M, Chiang CY,
Tagmount A, De Souza M, Neuhierl B, Bock A, Caruso J, Terry N (2004) Overexpression of
selenocysteine methyltransferase in Arabidopsis and Indian mustard increases selenium toler-
ance and accumulation. Plant Physiol 135:377–383
Lemly AD (1985) Ecological basis for regulating aquatic emissions from the power industry: the
case with selenium. Ecotoxicol Environ Saf 5:465–486
Leustek T, Murillo M, Cervantes M (1994) Cloning of a cDNA encoding ATP sulfurylase from
Arabidopsis thaliana by functional expression in Saccharomyces cerevisiae. Plant Physiol
105:897–902