Page 735 - Polymer-based Nanocomposites for Energy and Environmental Applications
P. 735

678                                                              Index

         Supercapacitors (Continued)        Thermal energy storage cement mortar
           applications of ionic liquids in graphene  (TESCM), 86–87
             based, 326–327                 Thermal gravimetric analyzer (TGA),
           battery vs., 256, 258t               79–80
           CNTs, 259                        Thermally stable copolyimide, 294
           EDLCs, 185–186, 188–189, 188f, 256–259,  Thermal stability, 15
             258f                           Thermocrete, 86–87
           electric double layer, 320       Thermoplastic nanocomposites, 493
           electrodes role in, 321–324      Thermoplastic polymer
           Faradaic, 321                      amorphous, 2
           graphene, 260–263, 324             applications, 3
           ionic liquids, 325–327             bonds, 1–2
           manganese dioxide, 265             crystalline, 2
           PANI@MnO 2 , 265, 266f             defined, 1–2
           PANI nanofiber, 259–263, 261f    Thermoset nanocomposites, 493
           polymer conducting materials, 259  Thermosetting resins, 3–4, 4f
           polypyrrole, 259–263, 262f         recycling techniques, 3–4, 4f
           power bursts, 256                Thin-film composite (TFC), 573–574
           pseudocapacitance, 256–259, 258f  Thin-film nanocomposite (TFN), 573–574
           pseudocapacitors, 186, 189       Thio-LISICON, 288–289
           transition metal oxides, 265     T-history method, 78, 80f
         Surface-located nanocomposite, 573–574  Tilted sandwich debond (TSD), 47
         Surface modified bionanocomposites,  Tin (Sn)-embedded carbon-silica polymer
             514–515                            nanocomposites, 622
           enzymatic phosphorylation, 447   Tin oxide, 254
           TEMPO-mediated oxidation technique,  Titania nanocrystallites, 417
             446                            Titanium dioxide (TiO 2 ), 158–159, 410–411,
         SWCNT/PEDOT/PSS nanocomposite films,   510–511, 523–524, 523f
             513                              polypyrrole nanocomposite, 473
         Synthesized fluorinated polyurethane  Titanium oxide, 254
             (FPU), 559, 560f               Trace metal ions, 603–607
         Synthetic ion exchangers, 603      Transition metal dichalcogenides, 345–347
                                            Transition metal oxides, 299, 321
                                            Transparent conductive oxide (TCO),
         T                                      362–363, 366–367
         Tanaka’s model, 144–146, 145f        flexible DSSC device structure, 370f
         Task-specific ionic liquids (TSILs),  Treated jute fiber reinforced biopol
             443, 457                           composites (TJBC), 41–42, 43f
         TCP method, biofilm detection, 399, 402f  Treated jute fiber-reinforced composites
         Template synthesis, 13, 621–622        (TJPC)
         TEMPO (2,2,6,6, tetramethyl-1-       tensile modulus, 60, 61f
             piperidinyloxy)-mediated oxidation,  tensile strength, 60, 61f
             446, 454                       Treated jute fiber-reinforced polyethylene/
         TEMPO-oxidized cellulose nanofibers    clay (TJPCC)
             (TOCNF), 444–445                 tensile modulus, 60, 61f
         Tensile fiber bundle test (TFBT), 44–45,  tensile strength, 60, 61f
             44f                            Treated jute polyester composites
         Tensile modulus (TM), 60, 61f          (TJPC), 56–57
         Tensile strength (TS), 60, 61f     2,2,2-Trifluoroethyl acetate (TEFA), 243–244
   730   731   732   733   734   735   736   737   738