Page 671 - Probability and Statistical Inference
P. 671
648 References
ponential families with applications to variance components models. Unpub-
lished Ph.D. Dissertation, Indian Statistical Institute, Calcutta.
Wald, A. (1939). Contributions to the theory of statistical estimation and
testing hypotheses. Ann. Math. Statist., 10, 299-326.
Wald, A. (1945). Sequential tests of statistical hypotheses. Ann. Math.
Statist., 16, 117-196. Reprinted in Breakthroughs in Statistics Volume I (S.
Kotz and N. L. Johnson, eds.), 1992. Springer-Verlag, Inc., New York.
Wald, A. (1947). Sequential Analysis. John Wiley & Sons, Inc., New York.
Reprinted (1973) by Dover Publications, Inc., New York.
Wald, A. (1949a). Note on the consistency of maximum likelihood esti-
mate. Ann. Math. Statist., 20, 595-601.
Wald, A. (1949b). Statistical decision functions. Ann. Math. Statist., 29,
165-205. Reprinted in Breakthroughs in Statistics Volume I (S. Kotz and N. L.
Johnson, eds.), 1992. Springer-Verlag, Inc., New York.
Wald, A. (1950). Statistical Decision Functions. John Wiley & Sons, Inc.,
New York.
Wallace, D.L. (1980). The Behrens-Fisher and Fieller-Creasy problems.
R. A. Fisher: An Appreciation (S.E. Fienberg and D.V. Hinkley, eds.), pp.
119-147. Springer-Verlag, Inc., New York.
Wegman, E.J. (1986). Some personal recollections of Harald Cramér on
the development of statistics and probability. Statist. Sci., 1, 528-535.
Whitehead, J. (1983). The Design and Analysis of Sequential Clinical
Trials. Ellis Horwood, Chichester.
Whitehead, J. (1986). On the bias of maximum likelihood estimation fol-
lowing a sequential test. Biometrika, 73, 573-581.
Whitehead, J. (1991). Sequential methods in clinical trials. Handbook of
Sequential Analysis (B.K. Ghosh and P.K. Sen, eds.), Chapter 26, pp. 593-
611. Marcel Dekker, Inc., New York.
Whittle, P. (1993). A conversation with Henry Daniels. Statist. Sci., 8,
342-353.
Wolfowitz, J. (1952). Abraham Wald, 1902-1950. Ann. Math. Statist., 32,
1-13.
Woodroofe, M. (1982). Nonlinear Renewal Theory is Sequential Analysis.
NSF-CBMS Monograph No. 39. Society for Industrial and Applied Math-
ematics, Philadelphia.
Zabell, S. (1989). R. A. Fisher on the history of inverse probability (with
discussions by R.L. Plackett and G.A. Barnard). Statist. Sci., 4, 247-263.
Zehna, P.W. (1966). Invariance of maximum likelihood estimators. Ann.
Math. Statist., 37, 744.
Zinger, A.A. (1958). The independence of quasi-polynomial statistics and
analytical properties of distributions. Theory Probab. Appl., 3, 247-265.

