Page 680 - Probability and Statistical Inference
P. 680

Index    657

                           Likelihood ratio (LR) 403-413, 416,             M
                              507
                              Monotone Likelihood ratio     Mann-Wald Theorem 261
                                                                Applications 262-263, 277-278
                              property (MLR) 420            Marginal distribution 101-103
                                Applications 421-424, 434   Markov inequality 145-148
                                   436                          Applications 146-148
                                Test; see Likelihood ratio test  Matrix 178, 224-226
                           Likelihood ratio (LR) test 507       Determinant 224
                              Bivariate normal distribution     Dispersion 214, 218
                              522                               Information matrix 305-308
                                  Comparing means 522-525       Inverse 224
                                  Comparing variances 528-        Partitioned 226
                                  529                           Jacobian 195-196, 198
                                  Correlation coefficient 525-  Negative definite (n.d.) 225-226
                                  528                           Non-singular 224
                              One-sample problem 508            Orthogonal 198, 225
                                                                Partitioned 215, 224-226
                                Normal mean 509-512               Determinant 226
                                Normal variance 512-515           Inverse 215, 226
                              Two-sample problem 515            Positive definite (p.d.) matrix
                                Comparing means 515-518,        225-226
                                532-533                         Positive semi definite (p.s.d.)
                                Comparing variances 519-        matrix 225, 305
                                522, 533                        Rank of a matrix 224
                           Location family of distributions  Maximum likelihood estimator
                              314-316                           (MLE) 345-350, 539-542
                              Pivotal approach 446-451          Invariance property 350
                                Confidence interval 446         Large-sample properties
                                                                  Asymptotic normality 540
                           Location-scale family of distribu-     Consistency 540-541
                              tions 314-316                       Efficiency 540
                              Pivotal approach 446-451      Median of a distribution 28, 62, 63
                                Confidence interval 446     Mean squared error 351-354
                           Logistic distribution 564        Method of moment estimator 342-
                           Lognormal distribution 45            344
                              Moment generating function    Minimal sufficiency 294-295, 300
                              (mgf)                             Basu’s Theorem 324
                                Non-existence 95                Complete statistic 320-323
                              Moments 94                        Lehmann-Scheffé Theorems
                           L’Hôpital’s rule 32                  296
                                                                Neyman factorization 288-289
                           Loss function                        Neyman-Pearson Lemma 402
                              Squared error loss 352-354,   Minimum variance unbiased
                              579                               estimator; see Unbiased estima-
                                Bayes risk 486                  tor
                                Frequentist Risk 352-354,   Moment generating function (mgf)
                              485-486, 579                      79, 254-256
                           Lyapunov’s inequality 156            Determination of a
   675   676   677   678   679   680   681   682   683   684   685