Page 275 -
P. 275

258                                                 REFERENCES

            Section 4.4
            4.4–1  Prove (4.4.32).
            4.4–2  PD Computed-Torque Simulation. Repeat Example 4.4.1 using various values
                  for the PD gains. Try both critical damping and underdamping to examine
                  the effects of overshoot on the joint trajectories.
            4.4–3  Classical Joint Control. Prove (4.4.55), (4.4.57), (4.4.60), and (4.4.62). See
                  [Franklin et al. 1986].
            4.4–4  PD Computed  Torque with Payload Uncertainty. The CT  controller is
                  inherently robust. In Example 4.4.1, suppose that m 2 changes from 1 kg to 2
                  kg at t=5 s, corresponding to a payload mass being picked up. The CT
                  controller, however, still uses a value of m 2=1. Use simulation to plot the
                  error time history. Does the performance improve with larger PD gains?
            4.4–5  PID Computed Torque with Payload Uncertainty. Repeat Problem 4.4–4
                  using a PID outer loop. Does the integral term help in rejecting the mass
                  uncertainty?
            4.4–6  PD Computed Torque with Friction Uncertainty. Repeat Problem 4.4–4
                  assuming now that m 2=1 kg stays constant and is known to the controller.
                  However, add friction of the form F(q,  ) = Fv +K dsgn( )(see Table 3.3.1) to
                  the arm dynamics, but not to the CT controller. Use v i=0.1, k i=0.1. Simulate
                  the performance for different PD gains.
            4.4–7  PID Computed Torque with Friction Uncertainty. Repeat Problem 4.4–6
                  using a PID outer loop.
            4.4–8  PD Computed Torque with Actuator Dynamics
                  (a) Design a CT control law for the two-link planar elbow arm with actuator
                     dynamics (Section 3.6) of the form


                  Take the link masses and lengths as 1 kg, 1 m. Take motor parameters
                                2
                  of J m =0.1 kg-m , b m =0.2 N-m/rad/s, and R=5Ω, Set the gear ratio
























            Copyright © 2004 by Marcel Dekker, Inc.
   270   271   272   273   274   275   276   277   278   279   280