Page 265 - Schaum's Outline of Differential Equations
P. 265

248                   SOLUTIONS  OF LINEAR  DIFFERENTIAL  EQUATIONS              [CHAP.  24





               or


               Then using Appendix A, entries  17 and 9 with a = 4 and t replacing x, we obtain











               Compare  with the results of Problem  1410.




                                     Supplementary       Problems


         Use Laplace  transforms to solve the following problems.

         24.17. y' + 2y = 0; y(0)  = 1              24.18. y' + 2y = 2;y(0)  = l
                      x
                                                                  y
         24.19. y' + 2y = e ; y(0)  = 1             24.20. y' + 2y = 0; (l)  = 1
                                                                  sx
         24.21. y' + 5y = 0; (l)  = 0               24.22. y'-5y = e ; y(0)  = 2
                       y
                       x
         24.23. y' + y = xe~ ; y(0)  = -2           24.24. y' + y = sin x
         24.25. y' + 20y = 6 sin 2x; y(0)  = 6      24.26. y" - y = 0; y(0)  = 1, /(O) = 1
                                                                 I
         24.27. y" -y  = sin x; y(0)  = 0, y'(0)  = 1  24.28. /'- 3, = e ;XO) = L/(0) = 0
         24.29. y" + 2y'  -3y  = sin 2x; y(0)  = /(O) = 0  24.30. y" + y = sin x; y(0)  = 0, /(O) = 2

         24.31. y" + y' + y = 0; y(0)  = 4, /(O) = -3  24.32. /' + 2y' + 5y = 3e^; y(G) = 1, /(O) = 1
         24.33. y" + 5y'  -3y  = u(x -  4); y(0)  = 0, y'(0) = 0  24.34. y" + y = 0; y(n)  = 0, y'(n)  = -1

                                                          4
         24.35. y'" ~y = 5; y(G)  = 0, /(O) = 0, /'(O) = 0  24.36. / > -y = 0; y(0)  = 1, /(O) = 0, /'(O) = 0, /"(O) = 0
   260   261   262   263   264   265   266   267   268   269   270