Page 362 - Schaum's Outline of Differential Equations
P. 362

ANSWERS TO SUPPLEMENTARY   PROBLEMS                         345



                                                                2x
         8.55.  [-6]sin;c+[-l](2cosjc)               8.56.  y = c 1e  + c 2e- 2x
                + [2] (3 sin x + cos x)  = 0
                   2
         8.57.  y = c^e " + c 2e^ x                  8.58.  y = c 1 sin 4x + c 2 cos 4x

         8.59.  y = c^* + c 2
         8.60.  Since y±  and y 2  are linearly dependent,  there is not enough information provided to exhibit the  general solution.

         8.61.  y = CiX  + c^e* + C 3y 3 where y 3  is a third particular solution, linearly independent  from  the other  two.

         8.62.  Since the given set is linearly dependent,  not enough information is provided to exhibit the general solution.

         8.63.  y = c^ + c 2e* + C 3e 2j:

                                                                                              2
                             4
         8.64.  y = CiX 2  + c^x"  + c 3x  + C 4y 4 + c sy s, where y 4  and y s  are two other  solutions having the property that the set  (x ,  x',
               4
              x , y 4, y$}  is linearly independent.
                                2
         8.65.  y = GI  sin x + c 2 cos x + x  — 2
         8.66.  Since  e* and 3e" are linearly dependent,  there is not enough information given to find  the  general solution.
                         x
         8.67.  y = c^ + c 2e~  + Cjxe*  + 5
         8.68.  Theorem  8.1 does  not  apply, since  a Q(x)  = —(2lx)  is not continuous about  X Q  = 0.

         8.69.  Yes;  a Q(x)  is continuous aboutx Q =l.

         8.70.  Theorem  8.1 does  not apply, since bi(x)  is zero at the origin.





         CHAPTER 9

                                                                5x
                   x
         9.17.  y = c 1e  + c 2e~ x                  9.18.  y = c le-  + c 2e 6x
                   x
         9.19.  y = c 1e  + c 2xe x                  9.20.  y = c 1 cos x + c 2 sin x

                             x
                    x
         9.21.  y = Cie~  cos x + c 2e~  sin x       9.22.  y = cf^ x  + c 2e~^ x
                                                                           x
         9.23.  y = c^ + c 2xe- 3x                   9.24.  y = cf~ x  cos -fix  + c 2e~  sin J2x
         9.25.  y = c, e K3 +  ^ m:t  + c 2e K3 -^ mx  9.26.  y = c le- (l!2)x  + c 2xe- (l!2)x




                   4
                        16
                                                                50t
         9.27.  x = cje ' + c 2e '                   9.28.  x = c ie-  + c 2e- wt
                      ) 2
                                                                     5
                            <3 rs) 2
                                                                st
         9.29.  x = c 1e <3 +  ^ " +c 2e -' "        9.30.  x = c 1e +c 2te '
         9.31.  x = Ci  cos 5t + c, sin 5t           9.32.  x = c 1 + c 2e- 2St
   357   358   359   360   361   362   363   364   365   366   367